
Đề bài
Cho phương trình \({x^2} - (2m - 1)x + {m^2} - 1 = 0\) (m là tham số)
a) Tìm điều kiện của m để phương trình có hai nghiệm phân biệt.
b) Định m để phương trình có hai nghiệm x1, x2 thỏa mãn \({({x_1}{\rm{ - }}{x_2})^2} = {x_1} - 3{x_2}\)
Phương pháp giải - Xem chi tiết
a) Phương trình có hai nghiệm phân biệtkhi và chỉ khi \(\Delta \left( {\Delta '} \right) > 0\)
b) Biến đổi đẳng thức đầu bài cho về dạng có chứa \({x_1} + {x_1};{x_1}.{x_2}\) sau đó thay hệ thức Viet \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}.{x_2} = \dfrac{c}{a}\end{array} \right.\) vào ta tìm được m.
Lời giải chi tiết
a) Ta có:
\(\begin{array}{l}a = 1;b = - \left( {2m - 1} \right);c = {m^2} - 1;\\\Delta = {\left( {2m - 1} \right)^2} - 4\left( {{m^2} - 1} \right) \\\;\;\;\;= 4{m^2} - 4m + 1 - 4{m^2} + 4 \\\;\;\;\;= - 4m + 5\end{array}\)
Phương trình có hai nghiệm phân biệt khi \(\Delta > 0 \Leftrightarrow - 4m + 5 > 0 \Leftrightarrow m < \dfrac{5}{4}\)
b) Áp dụng hệ thức Viet cho phương trình bậc hai ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m - 1\,\,\left( 2 \right)\\{x_1}.{x_2} = {m^2} - 1\,\,\,\,\,\,\,\left( 3 \right)\end{array} \right.\)
\(\begin{array}{l}{({x_1}{\rm{ - }}{x_2})^2} = {x_1} - 3{x_2}\\ \Leftrightarrow x_1^2 - 2{x_1}{x_2} + x_2^2 = {x_1} - 3{x_2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {x_1} - 3{x_2} \\ \Leftrightarrow {\left( {2m - 1} \right)^2} - 4\left( {{m^2} - 1} \right) = {x_1} - 3{x_2}\\ \Leftrightarrow 4{m^2} - 4m + 1 - 4{m^2} + 4 = {x_1} - 3{x_2}\\ \Leftrightarrow {x_1} - 3{x_2} = - 4m + 5\\ \Rightarrow {x_1} = - 4m + 5 + 3{x_2}\end{array}\)
Thay \({x_1} = - 4m + 5 + 3{x_2}\) vào (2) ta có:
\(\begin{array}{l} - 4m + 5 + 3{x_2} + {x_2} = 2m - 1\\ \Leftrightarrow 4{x_2} = 6m - 6 \Leftrightarrow {x_2} = \dfrac{3}{2}m - \dfrac{3}{2}\\ \Rightarrow {x_1} = - 4m + 5 + 3.\left( {\dfrac{3}{2}m - \dfrac{3}{2}} \right)\\\;\;\;\;\;\;\;\;\; = - 4m + 5 + \dfrac{9}{2}m - \dfrac{9}{2}\\\;\;\;\;\;\;\;\;\; = \dfrac{1}{2}m + \dfrac{1}{2}\end{array}\).
Thay \({x_1},{x_2}\) vào (3) ta có:
\(\left( {\dfrac{1}{2}m + \dfrac{1}{2}} \right).\left( {\dfrac{3}{2}m - \dfrac{3}{2}} \right) = {m^2} - 1 \\\Leftrightarrow \dfrac{3}{4}\left( {{m^2} - 1} \right) - \left( {{m^2} - 1} \right) = 0 \\\Leftrightarrow \dfrac{{ - 1}}{4}\left( {{m^2} - 1} \right) = 0 \\\Leftrightarrow {m^2} - 1 = 0 \\ \Leftrightarrow m = \pm 1\left( {tm} \right)\)
Vậy \(m = 1\) hoặc \(m = -1\) thỏa mãn yêu cầu bài toán.
Loigiaihay.com
Giải bài tập Cho phương trình
Giải bài tập Cho phương trình
Giải bài tập Cho phương trình
Giải bài tập Cho phương trình
Giải bài tập Tìm hai số u và v biết tổng S = u + v và tích P = u.v lần lượt nhận các giá trị sau:
Giải bài tập Không giải phương trình
Giải bài tập Cho phương trình
Giải bài tập Cho phương trình bậc hai ẩn x với m là tham số:
Giải bài tập Tìm hai số u và v biết tổng S = u + v và tích P = u.v của chúng nhận các giá trị sau:
Giải bài tập Hãy lập phương trình bậc hai nhận
Giải bài tập Gọi x1, x2 là các nghiệm của phương trình
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: