Bài 10 trang 58 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho phương trình

Đề bài

Cho phương trình \({x^2} - mx - 1 = 0\)

a) Chứng minh phương trình luôn có hai nghiệm phân biệt trái dấu.

b) Gọi x1, x2 làcác nghiệm của phương trình. Tính giá trị biểu thức \(M = \dfrac{{{x_1}^2 + {x_1} - 1}}{{{x_1}}} - \dfrac{{{x_2}^2 + {x_2} - 1}}{{{x_2}}}\)

Phương pháp giải - Xem chi tiết

a)Để chứng minh phương trình luôn có hai nghiệm phân biệt trái dấu m ta chứng minh cho a.c < 0

b) Biến đổi biểu thức M về biểu thức có chứa \({x_1} + {x_1};{x_1}.{x_2}\)  sau đó thay hệ thức Viet \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{b}{a}\\{x_1}.{x_2} = \dfrac{c}{a}\end{array} \right.\) vào M rồi tính giá trị biểu thức M.

Lời giải chi tiết

a) Cho phương trình: \({x^2} - mx - 1 = 0\) Ta có: \(a.c =  - 1 < 0\) nên phương trình luôn có hai nghiệm phân biệt trái dấu.

b) Áp dụnghệ thức Viet cho phương trình ban đầu ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} =  - 1\end{array} \right.\)

\(\begin{array}{l}M = \dfrac{{{x_1}^2 + {x_1} - 1}}{{{x_1}}} - \dfrac{{{x_2}^2 + {x_2} - 1}}{{{x_2}}} \\\;\;\;\;\;= \dfrac{{\left( {{x_1}^2 + {x_1} - 1} \right){x_2} - \left( {{x_2}^2 + {x_2} - 1} \right){x_1}}}{{{x_1}{x_2}}}\\ \;\;\;\;\;= \dfrac{{{x_1}^2{x_2} + {x_1}{x_2} - {x_2} - {x_1}{x_2}^2 - {x_1}{x_2} + {x_1}}}{{{x_1}{x_2}}} \\\;\;\;\;\;= \dfrac{{{x_1}{x_2}\left( {{x_1} - {x_2}} \right) + \left( {{x_1} - {x_2}} \right)}}{{{x_1}{x_2}}}\\\;\;\;\;\; = \dfrac{{\left( {{x_1} - {x_2}} \right)\left( {{x_1}{x_2} + 1} \right)}}{{{x_1}{x_2}}}\\ \;\;\;\;\;= \dfrac{{\left( {{x_1} - {x_2}} \right)\left( { - 1 + 1} \right)}}{{ - 1}} = 0\end{array}\)

Vậy \(M = 0.\)

Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng