Bài 12 trang 58 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho phương trình

Đề bài

Cho phương trình \({x^2} - 2(m + 1)x + 2m + 1 = 0\)

a) Chứng tỏ phương trình luôn có hai nghiệm với mọi giá trị của m.

b) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn \({x_1}^2 + 2(m + 1){x_2} + 2m - 3 = 0\)

Phương pháp giải - Xem chi tiết

a)Để chứng minh phương trình luôn có hai nghiệm với mọi giá trị của m ta chứng minh cho \(\Delta \left( {\Delta '} \right) \ge 0,\forall m\)

b) Áp dụng hệ thức Viet \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{b}{a}\\{x_1}.{x_2} = \dfrac{c}{a}\end{array} \right.\) vào ta tìm được m.

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}a = 1;b' =  - \left( {m + 1} \right);c = 2m + 1;\\\Delta ' = {\left( {m + 1} \right)^2} - \left( {2m + 1} \right) \\\;\;\;\;\;= {m^2} + 2m + 1 - 2m - 1\\\;\;\;\;\; = {m^2} \ge 0,\forall m\end{array}\)

Vậy phương trình đã cho luôn có hai nghiệm với mọi giá trị của m.

b) Áp dụng hệ thức Viet cho phương trình bậc hai ta có: \({x_1} + {x_2} = 2\left( {m + 1} \right);{x_1}{x_2} = 2m + 1\)

Do x1; x2  là hai nghiệm của phương trình nên ta có:

\({x_1}^2 - 2(m + 1){x_1} + 2m + 1 = 0\)

\(\Rightarrow {x_1}^2 = 2\left( {m + 1} \right){x_1} - 2m - 1\)

Thay vào đề ta có:

\(\begin{array}{l}2\left( {m + 1} \right){x_1} - 2m - 1 + 2(m + 1){x_2} + 2m - 3 = 0\\ \Leftrightarrow 2\left( {m + 1} \right)\left( {{x_1} + {x_2}} \right) - 4 = 0\\ \Leftrightarrow \left( {m + 1} \right)\left( {{x_1} + {x_2}} \right) - 2 = 0\\ \Leftrightarrow \left( {m + 1} \right).2.\left( {m + 1} \right) - 2 = 0\\ \Leftrightarrow {\left( {m + 1} \right)^2} = 1\\ \Leftrightarrow \left[ \begin{array}{l}m + 1 = 1\\m + 1 =  - 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\\m =  - 2\end{array} \right.\end{array}\)

Vậy \(m = 0\) hoặc \(m = - 2\) thỏa mãn yêu cầu bài toán.

Loigiaihay.com

Các bài liên quan: - Bài tập – Chủ đề 6: Hệ thức Vi - ét

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu