Bài 8.2 phần bài tập bổ sung trang 93 SBT toán 8 tập 1


Giải bài 8.2 phần bài tập bổ sung trang 93 sách bài tập toán 8. Cho tam giác ABC, đường trung tuyến AM và trọng tâm G. Gọi I là điểm đối xứng với A qua G. Chứng minh rằng I là điểm đối xứng với G qua M.

Đề bài

Cho tam giác \(ABC,\) đường trung tuyến \(AM\) và trọng tâm \(G.\) Gọi \(I\) là điểm đối xứng với \(A\) qua \(G.\)

Chứng minh rằng \(I\) là điểm đối xứng với \(G\) qua \(M.\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Ba đường trung tuyến trong tam giác cùng đi qua một điểm, điểm này cách mỗi đỉnh một khoảng bằng \(\dfrac{2}{3}\) độ dài đường trung tuyến ứng với đỉnh đó.

+)  Hai điểm gọi là đối xứng với nhau qua \(O\) nếu \(O\) là trung điểm của đoạn thẳng nối hai điểm đó.

Lời giải chi tiết

Tam giác ABC có G là trọng tâm và AM là đường trung tuyến nên \(A, G, M\) thẳng hàng.

Vì \(I\) đối xứng với \(A\) qua tâm \(G\) nên \(GA = GI\) và \(A, G, M, I\) thẳng hàng.

Lại có \(GM=\dfrac{1}{2} GA\) ( tính chất đường trung tuyến của tam giác)

Suy ra:   \(GM=\dfrac{1}{2} GI\) 

Mà:       \(GM + MI = GI\)

Suy ra: \(GM = MI=\dfrac{1}{2} GI\) nên điểm \(M\) là trung điểm của \(GI\)

Vậy \(I\) đối xứng với \(G\) qua tâm \(M.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 3 phiếu

Các bài liên quan: - Bài 8. Đối xứng tâm

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài