Bài 100 trang 92 SBT toán 8 tập 1>
Giải bài 100 trang 92 sách bài tập toán 8.Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O, vẽ đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H...
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho hình bình hành \(ABCD,\) \(O\) là giao điểm của hai đường chéo. Qua \(O,\) vẽ đường thẳng cắt hai cạnh \(AB,\) \(CD\) ở \(E, F.\) Qua \(O\) vẽ đường thẳng cắt hai cạnh \(AD, BC\) ở \(G, H.\) Chứng minh rằng \(EGFH\) là hình bình hành.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức:
+) Trong hình bình hành, hai đường chéo cắt nhau tại trung điểm của mỗi đường.
+) Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
Lời giải chi tiết
Xét \(∆ OAE\) và \(∆ OCF:\)
\(OA = OC\) (tính chất hình bình hành)
\(\widehat {AOE} = \widehat {COF}\) (đối đỉnh)
\(\widehat {OAE} = \widehat {OCF}\) (so le trong)
Do đó: \(∆ OAE = ∆ OCF\;\; (g.c.g)\)
\(⇒ OE = OF \;\;(1)\)
Xét \(∆ OAG\) và \(∆ OCH:\)
\(OA = OC\) (tính chất hình bình hành)
\(\widehat {AOG} = \widehat {COH}\) (đối đỉnh)
\(\widehat {OAG} = \widehat {OCH}\) (so le trong)
Do đó: \(∆ OAG = ∆ OCH \;\;(g.c.g)\)
\(⇒ OG = OH \;\;(2)\)
Từ \((1)\) và \((2)\) suy ra: Tứ giác \(EGFH\) là hình bình hành ( vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
Loigiaihay.com


- Bài 101 trang 92 SBT toán 8 tập 1
- Bài 102 trang 92 SBT toán 8 tập 1
- Bài 103 trang 92 SBT toán 8 tập 1
- Bài 104 trang 93 SBT toán 8 tập 1
- Bài 105 trang 93 SBT toán 8 tập 1
>> Xem thêm