Bài 79 trang 148 SBT toán 7 tập 1


Đề bài

Cho đường tròn tâm \(O\) đường kính \(AB.\) Gọi \(M\) là một điểm nằm trên đường tròn, tính số đo góc \(AMB\).

Phương pháp giải - Xem chi tiết

Sử dụng: 

- Tam giác cân là tam giác có hai cạnh bằng nhau.

- Tính chất: Tam giác cân có hai góc ở đáy bằng nhau.

Lời giải chi tiết

Nối \(OM\), ta có:

\(OA = OM\) (bằng bán kính đường tròn tâm \(O\)) 

\( \Rightarrow ∆OAM\) cân tại \(O\).

\( \Rightarrow \widehat A = \widehat {{M_1}}\) (tính chất tam giác cân)  (1)

\(OM = OB\) (bằng bán kính đường tròn tâm \(O\))

\( \Rightarrow  ∆OBM\) cân tại \(O\).

\( \Rightarrow \widehat {{M_2}} = \widehat B\) (tính chất tam giác cân)  (2)

Áp dụng định lí tổng các góc của một tam giác vào \(∆AMB\), ta có:

\(\widehat A + \widehat {AMB} + \widehat B = 180^\circ \)

\( \Rightarrow \widehat A + \widehat {{M_1}} + \widehat {{M_2}} + \widehat B = 180^\circ \)       (3)

Từ (1), (2) và (3) suy ra:

\(  \widehat M_1 + \widehat {{M_1}} + \widehat {{M_2}} + \widehat M_2 = 180^\circ \)

\(\Rightarrow 2.\left( {\widehat {{M_1}} + \widehat {{M_2}}} \right) = 180^\circ \)

\( \Rightarrow \widehat {{M_1}} + \widehat {{M_2}} =180^o:2= 90^\circ \) hay \(\widehat {AMB} = 90^\circ \)

Loigiaihay.com


Bình chọn:
3.9 trên 13 phiếu

>> Xem thêm

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.