Bài 72 trang 147 SBT toán 7 tập 1


Đề bài

Cho tam giác \(ABC\) cân tại \(A.\) Trên tia đối của tia \(BC\) lấy điểm \(D\), trên tia đối của tia \(CB\) lấy điểm \(E\) sao cho \(BD = CE.\) Chứng minh rằng \(∆ADE\) là tam giác cân.

Phương pháp giải - Xem chi tiết

- Tam giác có hai cạnh bằng nhau là tam giác cân.

- Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải chi tiết

\( ∆ABC\) cân tại \(A\) nên \(\widehat {{B_1}} = \widehat {{C_1}}\) (tính chất tam giác cân) 

Lại có: \(\widehat {{B_1}} + \widehat {{B_2}} = 180^\circ \) (hai góc kề bù)

           \(\widehat {{C_1}} + \widehat {{C_2}} = 180^\circ \) (hai góc kề bù)

\( \Rightarrow \widehat {{B_2}} = \widehat {{C_2}}\)

Xét \(∆ABD\) và \(∆ACE\) có:

\(AB = AC\) (vì \( ∆ABC\) cân tại \(A\))

\(\widehat {{B_2}} = \widehat {{C_2}}\) (chứng minh trên)

\(BD = CE\) (gt)

\( \Rightarrow ∆ABD = ∆ACE\) (c.g.c)

\( \Rightarrow  AD = AE\) (hai cạnh tương ứng)

\(∆ADE\) có \(AD=AE\) nên \(∆ADE\) cân tại \(A\) (theo định nghĩa tam giác cân).

Loigiaihay.com


Bình chọn:
4.6 trên 18 phiếu

Các bài liên quan: - Bài 6. Tam giác cân

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.