Bài 6 trang 137 SBT toán 7 tập 1


Đề bài

Cho tam giác \(ABC\) có \(\widehat B = \widehat C = 50^\circ \). Gọi tia \(Am\) là tia phân giác của góc ngoài ở đỉnh \(A.\) Hãy chứng tỏ \(Am // BC\).

Phương pháp giải - Xem chi tiết

- Góc ngoài tam giác bằng tổng hai góc trong không kề với nó.

- Nếu đường thẳng \(c\) cắt hai đường thẳng \(a, b\) và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc cặp góc đồng vị bằng nhau, hoặc cặp góc trong cùng phía bù nhau) thì \(a\) và \(b\) song song với nhau.

Lời giải chi tiết

Xét \(∆ABC\) ta có: \(\widehat {CA{\rm{D}}}\) là góc ngoài ở đỉnh \(A\). 

\(\widehat {CAD}{\rm{ = }}\widehat B + \widehat C = 50^\circ  + 50^\circ  = 100^\circ \) (tính chất góc ngoài của tam giác)

\(\displaystyle \widehat {{A_1}} = \widehat {{A_2}} = {1 \over 2}\widehat {CA{\rm{D}}}=\frac{{{{100}^o}}}{2}= 50^\circ \) (vì tia \(Am\) là tia phân giác của \(\widehat {CA{\rm{D}}}\))

Do đó \(\widehat {{A_1}} = \widehat C = 50^\circ \)

Mà \(\widehat {{A_1}} \) và \( \widehat C\) là cặp góc so le trong nên \(Am // BC\).

Loigiaihay.com


Bình chọn:
4.7 trên 19 phiếu

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.