Bài 2.97 trang 110 SBT hình học 10


Đề bài

Trong mặt phẳng \(Oxy\) cho ba điểm \(A\left( { - 1;1} \right),B\left( {2;4} \right),C\left( {6;0} \right)\). Khẳng định nào sau đây đúng?

A. Tam giác \(ABC\) có ba góc nhọn.

B. Tam giác \(ABC\) có một góc vuông.

C. Tam giác \(ABC\) có một góc tù.

D. Tam giác \(ABC\) đều.

Phương pháp giải - Xem chi tiết

Tính cosin các góc của tam giác \(ABC\) và nhận xét.

Lời giải chi tiết

Ta có: \(\overrightarrow {AB}  = \left( {3;3} \right),\overrightarrow {AC}  = \left( {7; - 1} \right)\), \(\overrightarrow {BC}  = \left( {4; - 4} \right)\)

Dễ thấy \(\overrightarrow {AB} .\overrightarrow {BC}  = 3.4 + 3.\left( { - 4} \right) = 0\) nên \(AB \bot BC\).

Vậy tam giác \(ABC\) có một góc vuông.

Cách khác:

\(\begin{array}{l}
AB = \sqrt {{3^2} + {3^2}} = \sqrt {18} \\
AC = \sqrt {{7^2} + {{\left( { - 1} \right)}^2}} = \sqrt {50} \\
BC = \sqrt {{4^2} + {{\left( { - 4} \right)}^2}} = \sqrt {32} \\
A{B^2} + B{C^2} = 18 + 32 = 50\\
A{C^2} = 50\\
\Rightarrow A{B^2} + B{C^2} = A{C^2}
\end{array}\)

Vậy tam giác \(ABC\) có một góc vuông.

Chọn B.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.