Bài 2.87 trang 108 SBT hình học 10


Giải bài 2.87 trang 108 sách bài tập hình học 10. Tam giác ABC vuông và cân tại A...

Đề bài

Tam giác \(ABC\) vuông và cân tại \(A\) có \(AB = a\). Đường tròn nội tiếp tam giác \(ABC\) có bán kính \(r\) bằng:

A. \(\dfrac{a}{2}\)

B. \(\dfrac{a}{{\sqrt 2 }}\)

C. \(\dfrac{a}{{2 + \sqrt 2 }}\)

D. \(\dfrac{a}{3}\)

Phương pháp giải - Xem chi tiết

- Tính cạnh huyền và suy ra sử dụng công thức \(S = pr = \dfrac{1}{2}ab\sin C\) suy ra \(r\).

Lời giải chi tiết

Ta có: \(BC = \sqrt {A{B^2} + A{C^2}}  = a\sqrt 2 \).

Diện tích tam giác \(S = \dfrac{1}{2}AB.AC = \dfrac{{{a^2}}}{2}\).

Nửa chu vi \(p = \dfrac{{AB + AC + BC}}{2}\) \( = \dfrac{{a + a + a\sqrt 2 }}{2} = \dfrac{{\left( {2 + \sqrt 2 } \right)a}}{2}\).

Vậy \(r = \dfrac{S}{p} = \dfrac{{{a^2}}}{2}:\dfrac{{\left( {2 + \sqrt 2 } \right)a}}{2} = \dfrac{a}{{2 + \sqrt 2 }}\).

Chọn C.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài