Bài 2.80 trang 108 SBT hình học 10


Giải bài 2.80 trang 108 sách bài tập hình học 10. Trong mặt phẳng...

Đề bài

Trong mặt phẳng \(Oxy\) cho tam giác \(ABC\) với \(A\left( {1;1} \right)\), \(B\left( {2;4} \right)\), \(C\left( {10; - 2} \right)\). Giá trị của \(\cos C\) bằng:

A. \(\dfrac{1}{{\sqrt {10} }}\)

B. \( - \dfrac{1}{{\sqrt {10} }}\)

C. \(\dfrac{3}{{\sqrt {10} }}\)

D. \( - \dfrac{3}{{\sqrt {10} }}\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).

Lời giải chi tiết

Ta có: \(\overrightarrow {CA}  = \left( { - 9;3} \right),\overrightarrow {CB}  = \left( { - 8;6} \right)\) \( \Rightarrow \overrightarrow {CA} .\overrightarrow {CB}  =  - 9.\left( { - 8} \right) + 3.6 = 90\) và \(\left| {\overrightarrow {CA} } \right| = \sqrt {81 + 9}  = 3\sqrt {10} \), \(\left| {\overrightarrow {CB} } \right| = \sqrt {64 + 36}  = 10\)

Vậy \(\cos C = \dfrac{{\overrightarrow {CA} .\overrightarrow {CB} }}{{\left| {\overrightarrow {CA} } \right|.\left| {\overrightarrow {CB} } \right|}} = \dfrac{{90}}{{3\sqrt {10} .10}} = \dfrac{3}{{\sqrt {10} }}\).

Chọn C.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài