Bài 2.79 trang 108 SBT hình học 10


Giải bài 2.79 trang 108 sách bài tập hình học 10. Cho tam giác...

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\), \(AB = a\), \(BC = 2a\). Tích vô hướng \(\overrightarrow {BA} .\overrightarrow {BC} \) bằng

A. \({a^2}\)                            B. \( - {a^2}\)

C. \(\dfrac{1}{2}{a^2}\)                        D. \({a^2}\sqrt 3 \)

Phương pháp giải - Xem chi tiết

Tính \(\cos B\) và áp dụng công thức \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\) tính tích vô hướng.

Lời giải chi tiết

Ta có: \(\Delta ABC\) vuông tại \(A\) nên \(\cos B = \dfrac{{AB}}{{BC}} = \dfrac{a}{{2a}} = \dfrac{1}{2}\)

\(\overrightarrow {BA} .\overrightarrow {BC} \)\( = \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|.\cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right)\) \( = a.2a.\dfrac{1}{2} = {a^2}\).

Chọn A.

Cách khác:

\(\begin{array}{l}
\overrightarrow {BA} .\overrightarrow {BC} = - \overrightarrow {AB} \left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\\
= - \overrightarrow {AB} .\overrightarrow {AC} + {\overrightarrow {AB} ^2}\\
= 0 + A{B^2}\\
= 0 + {a^2}\\
= {a^2}
\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài