Bài 2.88 trang 109 SBT hình học 10


Giải bài 2.88 trang 109 sách bài tập hình học 10. Tam giác ABC có các cạnh...

Đề bài

Tam giác \(ABC\) có các cạnh \(a,b,c\) thỏa mãn điều kiện \(\left( {a + b + c} \right)\left( {a + b - c} \right) = 3ab\). Khi đó số đo của góc \(C\) là:

A. \({120^0}\)

B. \({30^0}\)

C. \({45^0}\)

D. \({60^0}\)

Phương pháp giải - Xem chi tiết

Sử dụng định lý cô sin trong tam giác \(ABC\): \({c^2} = {a^2} + {b^2} - 2ab\cos C\)

Lời giải chi tiết

Ta có: \(\left( {a + b + c} \right)\left( {a + b - c} \right) = 3ab\)

\( \Leftrightarrow {\left( {a + b} \right)^2} - {c^2} = 3ab\) \( \Leftrightarrow {a^2} + {b^2} + 2ab - {c^2} = 3ab\) \( \Leftrightarrow {c^2} = {a^2} + {b^2} - ab\)

Mà \({c^2} = {a^2} + {b^2} - 2ab\cos C\) nên \({a^2} + {b^2} - 2ab\cos C = {a^2} + {b^2} - ab\)

\( \Leftrightarrow 2\cos C = 1 \Leftrightarrow \cos C = \dfrac{1}{2}\) \( \Leftrightarrow C = {60^0}\).

Chọn D.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí