Bài 6 trang 197 Sách bài tập (SBT) Toán Hình học 10


Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là

Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là \(\left( { - \sqrt 3 ;0} \right)\) và đi qua điểm \(M\left( {1;{{\sqrt 3 } \over 2}} \right)\)

a) Hãy xác định tọa độ các đỉnh của (E).

b) Viết phương trình chính tắc của (E).

c) Đường thẳng  đi qua tiêu điểm thứ hai của elip (E) và vuông góc với trục Ox và cắt (E) tại hai điểm C và D. Tính độ dài đoạn thẳng CD.

Gợi ý làm bài

a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\)  nên \(c = \sqrt 3 .\)

Phương trình chính tăc của (E) có dạng

\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1.\)

Ta có : \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)

\( \Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\,\,\,\,\,\,\,\,\,\,(1)\)

Và \({a^2} = {b^2} + {c^2} = {b^2} + 3\)

Thay vào (1) ta được : 

\(\eqalign{
& {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr
& \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr} \)

\( \Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)

Suy ra \({a^2} = 4.\)

Ta có a = 2 ; b = 1. 

Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)

                                    (0 ; -1) và (0 ; 1).

b) Phương trình chính tắc của (E) là : 

\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta \) đi qua điểm \(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3 .\)

Phương trình tung độ giao điểm của \(\Delta \) và (E) là : 

\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} =  \pm {1 \over 2}.\)

Suy ra tọa độ của C và D là : 

\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\) và \(\left( {\sqrt 3 ;{1 \over 2}} \right)\)

Vậy CD = 1. 

Sachbaitap.net


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí