Bài 2.90 trang 109 SBT hình học 10


Giải bài 2.90 trang 109 sách bài tập hình học 10. Tam giác ABC vuông cân tại A...

Đề bài

Tam giác \(ABC\) vuông cân tại \(A\) có \(AB = AC = a\). Đường trung tuyến \(BM\) có độ dài là:

A. \(1,5a\)

B. \(a\sqrt 2 \)

C. \(a\sqrt 3 \)

D. \(\dfrac{{a\sqrt 5 }}{2}\)

Phương pháp giải - Xem chi tiết

Tính độ dài \(BC\) và áp dụng công thức trung tuyến \(m_b^2 = \dfrac{{{a^2} + {c^2}}}{2} - \dfrac{{{b^2}}}{4}\).

Lời giải chi tiết

Tam giác \(ABC\) vuông cân tại \(A\) nên \(BC = \sqrt {A{B^2} + A{C^2}}  = a\sqrt 2 \).

Độ dài trung tuyến \(B{M^2} = \dfrac{{B{A^2} + B{C^2}}}{2} - \dfrac{{A{C^2}}}{4}\) \( = \dfrac{{{a^2} + 2{a^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{5{a^2}}}{4}\)

\( \Rightarrow BM = \dfrac{{a\sqrt 5 }}{2}\).

Chọn D.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài