Bài 2.90 trang 109 SBT hình học 10


Giải bài 2.90 trang 109 sách bài tập hình học 10. Tam giác ABC vuông cân tại A...

Đề bài

Tam giác \(ABC\) vuông cân tại \(A\) có \(AB = AC = a\). Đường trung tuyến \(BM\) có độ dài là:

A. \(1,5a\)

B. \(a\sqrt 2 \)

C. \(a\sqrt 3 \)

D. \(\dfrac{{a\sqrt 5 }}{2}\)

Phương pháp giải - Xem chi tiết

Tính độ dài \(BC\) và áp dụng công thức trung tuyến \(m_b^2 = \dfrac{{{a^2} + {c^2}}}{2} - \dfrac{{{b^2}}}{4}\).

Lời giải chi tiết

Tam giác \(ABC\) vuông cân tại \(A\) nên \(BC = \sqrt {A{B^2} + A{C^2}}  = a\sqrt 2 \).

Độ dài trung tuyến \(B{M^2} = \dfrac{{B{A^2} + B{C^2}}}{2} - \dfrac{{A{C^2}}}{4}\) \( = \dfrac{{{a^2} + 2{a^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{5{a^2}}}{4}\)

\( \Rightarrow BM = \dfrac{{a\sqrt 5 }}{2}\).

Chọn D.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí