Bài 2.90 trang 109 SBT hình học 10


Đề bài

Tam giác \(ABC\) vuông cân tại \(A\) có \(AB = AC = a\). Đường trung tuyến \(BM\) có độ dài là:

A. \(1,5a\)

B. \(a\sqrt 2 \)

C. \(a\sqrt 3 \)

D. \(\dfrac{{a\sqrt 5 }}{2}\)

Phương pháp giải - Xem chi tiết

Tính độ dài \(BC\) và áp dụng công thức trung tuyến \(m_b^2 = \dfrac{{{a^2} + {c^2}}}{2} - \dfrac{{{b^2}}}{4}\).

Lời giải chi tiết

Tam giác \(ABC\) vuông cân tại \(A\) nên \(BC = \sqrt {A{B^2} + A{C^2}}  = a\sqrt 2 \).

Độ dài trung tuyến \(B{M^2} = \dfrac{{B{A^2} + B{C^2}}}{2} - \dfrac{{A{C^2}}}{4}\) \( = \dfrac{{{a^2} + 2{a^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{5{a^2}}}{4}\)

\( \Rightarrow BM = \dfrac{{a\sqrt 5 }}{2}\).

Chọn D.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.