Bài 2.90 trang 109 SBT hình học 10


Giải bài 2.90 trang 109 sách bài tập hình học 10. Tam giác ABC vuông cân tại A...

Đề bài

Tam giác \(ABC\) vuông cân tại \(A\) có \(AB = AC = a\). Đường trung tuyến \(BM\) có độ dài là:

A. \(1,5a\)

B. \(a\sqrt 2 \)

C. \(a\sqrt 3 \)

D. \(\dfrac{{a\sqrt 5 }}{2}\)

Phương pháp giải - Xem chi tiết

Tính độ dài \(BC\) và áp dụng công thức trung tuyến \(m_b^2 = \dfrac{{{a^2} + {c^2}}}{2} - \dfrac{{{b^2}}}{4}\).

Lời giải chi tiết

Tam giác \(ABC\) vuông cân tại \(A\) nên \(BC = \sqrt {A{B^2} + A{C^2}}  = a\sqrt 2 \).

Độ dài trung tuyến \(B{M^2} = \dfrac{{B{A^2} + B{C^2}}}{2} - \dfrac{{A{C^2}}}{4}\) \( = \dfrac{{{a^2} + 2{a^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{5{a^2}}}{4}\)

\( \Rightarrow BM = \dfrac{{a\sqrt 5 }}{2}\).

Chọn D.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài