

Bài 2.76 trang 107 SBT hình học 10>
Giải bài 2.76 trang 107 sách bài tập hình học 10. Gọi G là trọng tâm...
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Gọi \(G\) là trọng tâm tam giác đều \(ABC\) có cạnh bằng \(a\). Trong các khẳng định sau, tìm khẳng định sai:
A. \(\overrightarrow {AB} .\overrightarrow {AC} = \dfrac{1}{2}{a^2}\)
B. \(\overrightarrow {AC} .\overrightarrow {CB} = - \dfrac{1}{2}{a^2}\)
C. \(\overrightarrow {GA} .\overrightarrow {GB} = \dfrac{{{a^2}}}{6}\)
D. \(\overrightarrow {AB} .\overrightarrow {AG} = \dfrac{1}{2}{a^2}\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính tích vô hướng \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).
Lời giải chi tiết
Đáp án A: \(\overrightarrow {AB} .\overrightarrow {AB} \) \( = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\) \( = a.a.\cos {60^0} = \dfrac{1}{2}{a^2}\)
A đúng.
Đáp án B: \(\overrightarrow {AC} .\overrightarrow {CB} \)\( = \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {CB} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right)\) \( = a.a.\cos {120^0} = - \dfrac{1}{2}{a^2}\)
B đúng.
Đáp án C: Tam giác \(ABC\) đều nên chiều cao \(AH = \dfrac{{a\sqrt 3 }}{2}\) và \(AG = \dfrac{2}{3}AH = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\).
Do đó \(\overrightarrow {GA} .\overrightarrow {GB} \) \( = \left| {\overrightarrow {GA} } \right|.\left| {\overrightarrow {GB} } \right|.\cos \left( {\overrightarrow {GA} ,\overrightarrow {GB} } \right)\) \( = \dfrac{{a\sqrt 3 }}{3}.\dfrac{{a\sqrt 3 }}{3}.\cos {120^0} = - \dfrac{{{a^2}}}{6}\)
C sai.
Chọn C.
Loigiaihay.com


- Bài 2.77 trang 107 SBT hình học 10
- Bài 2.78 trang 107 SBT hình học 10
- Bài 2.79 trang 108 SBT hình học 10
- Bài 2.80 trang 108 SBT hình học 10
- Bài 2.81 trang 108 SBT hình học 10
>> Xem thêm