Bài 2.76 trang 107 SBT hình học 10


Đề bài

Gọi \(G\) là trọng tâm tam giác đều \(ABC\) có cạnh bằng \(a\). Trong các khẳng định sau, tìm khẳng định sai:

A. \(\overrightarrow {AB} .\overrightarrow {AC}  = \dfrac{1}{2}{a^2}\)

B. \(\overrightarrow {AC} .\overrightarrow {CB}  =  - \dfrac{1}{2}{a^2}\)

C. \(\overrightarrow {GA} .\overrightarrow {GB}  = \dfrac{{{a^2}}}{6}\)

D. \(\overrightarrow {AB} .\overrightarrow {AG}  = \dfrac{1}{2}{a^2}\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính tích vô hướng \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).

Lời giải chi tiết

Đáp án A: \(\overrightarrow {AB} .\overrightarrow {AB} \) \( = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\) \( = a.a.\cos {60^0} = \dfrac{1}{2}{a^2}\)

A đúng.

Đáp án B: \(\overrightarrow {AC} .\overrightarrow {CB} \)\( = \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {CB} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right)\) \( = a.a.\cos {120^0} =  - \dfrac{1}{2}{a^2}\)

B đúng.

Đáp án C: Tam giác \(ABC\) đều nên chiều cao \(AH = \dfrac{{a\sqrt 3 }}{2}\) và \(AG = \dfrac{2}{3}AH = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\).

Do đó \(\overrightarrow {GA} .\overrightarrow {GB} \) \( = \left| {\overrightarrow {GA} } \right|.\left| {\overrightarrow {GB} } \right|.\cos \left( {\overrightarrow {GA} ,\overrightarrow {GB} } \right)\) \( = \dfrac{{a\sqrt 3 }}{3}.\dfrac{{a\sqrt 3 }}{3}.\cos {120^0} =  - \dfrac{{{a^2}}}{6}\)

C sai.

Chọn C.

Loigiaihay.com

 


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.