Bài 107 trang 23 SBT toán 9 tập 1


Giải bài 107 trang 23 sách bài tập toán 9. Cho biểu thức B=...a) Rút gọn B. b) Tìm x để B = 3.

Lựa chọn câu để xem lời giải nhanh hơn

Cho biểu thức

\(B = (\dfrac{{2x + 1}}{{\sqrt {{x^3}}  - 1}} - \dfrac{{\sqrt x }}{{x + \sqrt x  + 1}})(\dfrac{{1 + \sqrt {{x^3}} }}{{1 + \sqrt x }} - \sqrt x )\) với \(x \ge 0\) và \(x \ne 1\) . 

LG câu a

Rút gọn \(B\); 

Phương pháp giải:

Các bước rút gọn biểu thức: 

Bước 1: Điều kiện để biểu thức có nghĩa (căn thức xác định, mẫu khác không… nếu bài toán chưa cho)
Bước 2: Phân tích các mẫu thành nhân tử (áp dụng thành thạo các phép biến đổi căn thức)
+ Áp dụng quy tắc đổi dấu một cách hợp lý để làm xuất hiện nhân tử chung.
+  Thường xuyên để ý xem mẫu này có là bội hoặc ước của mẫu khác không.
Bước 3: Tiến hành quy đồng rút gọn, kết hợp với điều kiện của đề bài để kết luận.

Sử dụng hằng đẳng thức:

\({a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right)\)

\({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)

Lời giải chi tiết:

Ta có:  

\(\eqalign{
& B = \left( {{{2x + 1} \over {{{\sqrt {x^3} }} - 1}} - {{\sqrt x } \over {x + \sqrt x + 1}}} \right)\cr 
& . \left( {{{1 + \sqrt {{x^3}} } \over {1 + \sqrt x }} - \sqrt x } \right) \cr 
& = \left[ {{{2x + 1} \over {\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} - {{\sqrt x } \over {x + \sqrt x + 1}}} \right]\cr 
& . \left[ {{{\left( {1 + \sqrt x } \right)\left( {1 - \sqrt x + \sqrt {{x^2}} } \right)} \over {1 + \sqrt x }} - \sqrt x } \right] \cr 
& = {{2x + 1 - \sqrt x \left( {\sqrt x - 1} \right)} \over {\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\cr 
& . \left( {1 - \sqrt x + \sqrt {{x^2}} - \sqrt x } \right) \cr & = {{2x + 1 - x + \sqrt x } \over {\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}. \left( {\sqrt {{x^2}} -2 \sqrt x +1} \right) \cr 
& = {{x + \sqrt x+1 } \over {\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.{\left( {\sqrt x - 1} \right)^2} \cr 
& = {{\left( {x + \sqrt x + 1} \right){{\left( {\sqrt x - 1} \right)}^2}} \over {\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} \cr} \)

\( = \sqrt x  - 1\) (với  \(x \ge 0\) và \(x \ne 1)\)

LG câu b

Tìm \(x\) để \(B = 3\).  

Phương pháp giải:

Cho \(B=3\) rồi tìm \(x\)

Sử dụng: \(\sqrt x=a\Leftrightarrow x=a^2\) với \(a\ge 0\). 

Lời giải chi tiết:

Với \(B = 3\) ta có:

\(\sqrt x  - 1 = 3 \)  (ĐK: \(x \ge 0\) và \(x \ne 1)\)

\(\Leftrightarrow \sqrt x  = 4 \Leftrightarrow x = 16(tm)\) 

Vậy với \(x=16\) thì \(B=3.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 8 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài