Bài 100 trang 22 SBT toán 9 tập 1


Giải bài 100 trang 22 sách bài tập toán 9. Rút gọn các biểu thức....

Lựa chọn câu để xem lời giải nhanh hơn

Rút gọn các biểu thức:  

LG câu a

\(\sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}}  + \sqrt {4 - 2\sqrt 3 } ;\)

Phương pháp giải:

Phân tích biểu thức thành hằng đẳng thức: 

\({a^2} \pm 2ab + {b^2} = {(a \pm b)^2}\)

Áp dụng \(\sqrt {{A^2}}  = \left| A \right|\)

Với \(A \ge 0\) suy ra \(\left| A \right| = A\) 

Với \(A < 0\) suy ra \(\left| A \right| =- A\)

Lời giải chi tiết:

\(\eqalign{
& \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} + \sqrt {4 - 2\sqrt 3 } \cr 
& = \left| {2 - \sqrt 3 } \right| + \sqrt {3 - 2\sqrt 3 + 1} \cr} \)

\(\eqalign{
& = 2 - \sqrt 3 + \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} \cr 
& = 2 - \sqrt 3 + \left| {\sqrt 3 - 1} \right| \cr} \)

\( = 2 - \sqrt 3  + \sqrt 3  - 1 = 1\)

LG câu b

\(\sqrt {15 - 6\sqrt 6 }  + \sqrt {33 - 12\sqrt 6 } ;\)

Phương pháp giải:

Phân tích biểu thức thành hằng đẳng thức: 

\({a^2} \pm 2ab + {b^2} = {(a \pm b)^2}\)

Áp dụng \(\sqrt {{A^2}}  = \left| A \right|\)

Với \(A \ge 0\) suy ra \(\left| A \right| = A\) 

Với \(A < 0\) suy ra \(\left| A \right| =- A\)

Lời giải chi tiết:

\(\eqalign{
& \sqrt {15 - 6\sqrt 6 } + \sqrt {33 - 12\sqrt 6 } \cr 
& = \sqrt {9 - 2.3\sqrt 6 + 6} + \sqrt {9 - 2.3.2\sqrt 6 + 24} \cr} \)

\(\eqalign{
& = \sqrt {{{\left( {3 - \sqrt 6 } \right)}^2}} + \sqrt {{{\left( {3 - 2\sqrt 6 } \right)}^2}} \cr 
& = \left| {3 - \sqrt 6 } \right| + \left| {3 - 2\sqrt 6 } \right| \cr} \)

\( = 3 - \sqrt 6  + 2\sqrt 6  - 3 = \sqrt 6 \)

LG câu c

\(\left( {15\sqrt {200}  - 3\sqrt {450}  + 2\sqrt {50} } \right):\sqrt {10} .\) 

Phương pháp giải:

Áp dụng:

\(\dfrac{{\sqrt A }}{{\sqrt B }} = \sqrt {\dfrac{A}{B}} \) (với \(A \ge 0;B > 0\))

\(\sqrt {A^2B}=A.\sqrt B\) (với \(A \ge 0;B \ge 0\))

Lời giải chi tiết:

\(\eqalign{
& \left( {15\sqrt {200} - 3\sqrt {450} + 2\sqrt {50} } \right):\sqrt {10} \cr 
& = 15\sqrt {{{200} \over {10}}} - 3\sqrt {{{450} \over {10}}} + 2\sqrt {{{50} \over {10}}} \cr} \)

\(\eqalign{
& = 15\sqrt {20} - 3\sqrt {45} + 2\sqrt 5 \cr 
& = 15\sqrt {4.5} - 3\sqrt {9.5} + 2\sqrt 5 \cr} \)

\(\eqalign{
& = 15.2\sqrt 5 - 3.3\sqrt 5 + 2\sqrt 5 \cr 
& = 30\sqrt 5 - 9\sqrt 5 + 2\sqrt 5 = 23\sqrt 5 \cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 17 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài