Bài 101 trang 22 SBT toán 9 tập 1>
Giải bài 101 trang 22 sách bài tập toán 9. Tìm điều kiện xác định và rút gọn biểu thức...
Tổng hợp Đề thi vào 10 có đáp án và lời giải
Toán - Văn - Anh
LG câu a
Chứng minh:
\(x - 4\sqrt {x - 4} = {\left( {\sqrt {x - 4} - 2} \right)^2};\)
Phương pháp giải:
Phân tích biểu thức thành hằng đẳng thức:
\({a^2} \pm 2ab + {b^2} = {(a \pm b)^2}\)
Áp dụng \(A=\sqrt {{A^2}} \) với \(A\ge 0\).
Lời giải chi tiết:
Ta có:
\(VT=x - 4\sqrt {x - 4} \)
\(= \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4\)
\( = {\left( {\sqrt {x - 4} } \right)^2} - 2.2\sqrt {x - 4} + {2^2} \)
\(= {\left( {\sqrt {x - 4} - 2} \right)^2}=VP\)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
(Chú ý: VT: Vế trái, VP: Vế phải)
LG câu b
Tìm điều kiện xác định và rút gọn biểu thức:
\(A=\sqrt {x + 4\sqrt {x - 4} } + \sqrt {x - 4\sqrt {x - 4} } .\)
Phương pháp giải:
Phân tích biểu thức thành hằng đẳng thức:
\({a^2} \pm 2ab + {b^2} = {(a \pm b)^2}\)
Áp dụng \(\sqrt {{A^2}} = \left| A \right|\)
Với \(A \ge 0\) suy ra \(\left| A \right| = A\)
Với \(A < 0\) suy ra \(\left| A \right| =- A\)
Lời giải chi tiết:
\(A\) xác định khi: \(x - 4 \ge 0\) và \(x - 4\sqrt {x - 4} \ge 0\)
Ta có \(x - 4 \ge 0 \Leftrightarrow x \ge 4\), khi đó:
\(\eqalign{
& x - 4\sqrt {x - 4} = \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4 \cr
& = {\left( {\sqrt {x - 4} - 2} \right)^2} \ge 0\text{( luôn đúng )} \cr} \)
Vậy với \(x \ge 4\) thì \(A\) xác định.
Ta có:
\(\eqalign{
& x + 4\sqrt {x - 4} = \left( {x - 4} \right) +2.2\sqrt {x - 4} + 4 \cr
& = {\left( {\sqrt {x - 4} + 2} \right)^2} \cr} \)
Suy ra:
\(A = \sqrt {x + 4\sqrt {x - 4} } \)\(+ \sqrt {x - 4\sqrt {x - 4} } \)
\( = \sqrt {{{\left( {\sqrt {x - 4} + 2} \right)}^2}} \)\(+ \sqrt {{{\left( {\sqrt {x - 4} - 2} \right)}^2}} \)
\( = \left| {\sqrt {x - 4} + 2} \right| \)\(+ \left| {\sqrt {x - 4} - 2} \right|\)
\( = \sqrt {x - 4} + 2 + \left| {\sqrt {x - 4} - 2} \right|\)
+) Nếu
\(\eqalign{
& \sqrt {x - 4} - 2 \ge 0 \Leftrightarrow \sqrt {x - 4} \ge 2 \cr
& \Leftrightarrow x - 4 \ge 4 \Leftrightarrow x \ge 8 \cr} \)
thì: \(\left| {\sqrt {x - 4} - 2} \right| = \sqrt {x - 4} - 2\)
Ta có: \(A = \sqrt {x - 4} + 2 + \sqrt {x - 4} - 2 \)\(= 2\sqrt {x - 4} \)
+) Nếu:
\(\eqalign{
& \sqrt {x - 4} - 2 < 0 \Leftrightarrow \sqrt {x - 4} < 2 \cr
& \Leftrightarrow x - 4 < 4 \Leftrightarrow x < 8 \cr} \)
Suy ra \(4\le x<8\)
Do đó, \(\left| {\sqrt {x - 4} - 2} \right| \)\(= 2 - \sqrt {x - 4} \)
Ta có: \(A = \sqrt {x - 4} + 2 + 2 - \sqrt {x - 4} = 4\)
Vậy với \(x\ge 8\) thì \(A = 2\sqrt {x - 4} \)
Với \(4\le x<8\) thì \(A=4.\)
Loigiaihay.com


- Bài 102 trang 22 SBT toán 9 tập 1
- Bài 103 trang 22 SBT toán 9 tập 1
- Bài 104 trang 23 SBT toán 9 tập 1
- Bài 105 trang 23 SBT toán 9 tập 1
- Bài 106 trang 23 SBT toán 9 tập 1
>> Xem thêm