Bài 51 trang 166 SBT toán 8 tập 1>
Giải bài 51 trang 166 sách bài tập toán 8. Cho tam giác ABC với ba đường cao AA’, BB’, CC’. Gọi H là trực tâm của tam giác đó.
Đề bài
Cho tam giác \(ABC\) với ba đường cao \(AA’,\, BB’,\ CC’.\) Gọi \(H\) là trực tâm của tam giác đó.
Chứng minh rằng: \(\eqalign{{HA'} \over {AA'}} + \eqalign{{HB'} \over {BB'}} +\eqalign {{HC'} \over {CC'}} = 1\)
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính diện tích tam giác bằng tích cạnh đáy và chiều cao tương ứng: \(S=\dfrac{1}{2}ah\)
Lời giải chi tiết
\(\eqalign{ & {S_{HBC}} + {S_{HAC}} + {S_{HAB}} = {S_{ABC}} \cr & \Rightarrow {{{S_{HBC}}} \over {{S_{ABC}}}} + {{{S_{HABC}}} \over {{S_{ABC}}}} + {{{S_{HAB}}} \over {{S_{ABC}}}} = 1 \cr} \)
\( \Rightarrow \dfrac{{\dfrac{1}{2}HA'.BC}}{{\dfrac{1}{2}AA'.BC}} + \dfrac{{\dfrac{1}{2}HB'.AC}}{{\dfrac{1}{2}BB'.AC}} + \dfrac{{\dfrac{1}{2}HC'.AB}}{{\dfrac{1}{2}CC'.AB}} = 1\)
\( \Rightarrow \eqalign{{HA'} \over {AA'}} + \eqalign{{HB'} \over {BB'}} +\eqalign{{HC'} \over {CC'}} = 1\)
Loigiaihay.com
- Bài 52 trang 166 SBT toán 8 tập 1
- Bài 53 trang 166 SBT toán 8 tập 1
- Bài 54 trang 166 SBT toán 8 tập 1
- Bài 55 trang 166 SBT toán 8 tập 1
- Bài 56 trang 166 SBT toán 8 tập 1
>> Xem thêm