Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 4 - Hình học 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 4 - Hình học 9

Đề bài

Cho nửa đường tròn (O; R) đường kính AB. Vẽ dây CD sao cho CD //AB và \(CD = R\sqrt 3 \).

a)   Tính diện tích hình thang ABDC.

b)  Tính thể tích của hình được sinh ra khi quay hình thang ABDC quanh AB.

Lời giải chi tiết

a) Ta có : \(CD = R\sqrt 3 \left( {gt} \right) \Rightarrow \widehat {COD} = 120^\circ \)

 ∆COD cân tại O \( \Rightarrow \widehat {{C_1}} = \widehat {{D_1}} = 30^\circ \)

CD // AB (gt) \( \Rightarrow \widehat {{O_1}} = \widehat {{C_1}} = 30^\circ \) (so le trong)

Kẻ CH ^ AB ta có ∆CHO vuông, có \(\widehat {{O_1}} = 30^\circ \) nên \(CH = CO.\sin 30^\circ  = {R \over 2}\)

Vậy \({S_{ABDC}} = {{\left( {AB + CD} \right).CH} \over 2} = {{\left( {2R + R\sqrt 3 } \right).{R \over 2}} \over 2} \)\(\;= {{{R^2}\left( {2 + \sqrt 3 } \right)} \over 4}\).

b) Khi quay hình thang ABDC quanh cạnh đáy AB ta được hình sinh ra gồm một hình trụ có bán kính đáy là \(CH = {R \over 2}\), chiều cao \(CD = R\sqrt 3 \) và hai hình nón bằng nhau có bán kính đáy là \(CH = {R \over 2}\) và chiều cao AH.

Trong tam giác vuông CHO, ta có :

\(HO = \sqrt {C{O^2} - C{H^2}}  = \sqrt {{R^2} - {{\left( {{R \over 2}} \right)}^2}}  \)\(\;= {{R\sqrt 3 } \over 2}\)

\( \Rightarrow AH = AO - HO = R - {{R\sqrt 3 } \over 2} \)\(\;= {{R\left( {2 - \sqrt 3 } \right)} \over 2}\)

Vậy ta gọi Vn là thể tích hình nón.

\({V_n} = {1 \over 3}\pi {R^2}h = {1 \over 3}\pi .C{H^2}.AH\)\(\; = {1 \over 3}\pi {\left( {{R \over 2}} \right)^2}.{{R\left( {2 - \sqrt 3 } \right)} \over 2} = {{\pi {R^3}\left( {2 - \sqrt 3 } \right)} \over {24}}\)

Do đó hai hình tròn bằng nhau có thể tích là : \(2{V_n} = {{\pi {R^3}\left( {2 - \sqrt 3 } \right)} \over {12}}\)

 Và gọi Vt là thể tích hình trụ :

\({V_t} = \pi {R^2}h = \pi .C{H^2}.CD \)\(\;= \pi {\left( {{R \over 2}} \right)^2}.R\sqrt 3  = {{\pi {R^3}\sqrt 3 } \over 4}\)

Vậy thể tích của hình sinh ra là :

\(V = {V_t} + 2{V_n} = {{\pi {R^3}\sqrt 3 } \over 4} + {{\pi {R^3}\left( {2 - \sqrt 3 } \right)} \over {12}}\)

\(\;\;\;\; = {{3\pi {R^3}\sqrt 3  + 2\pi {R^3} - \pi {R^3}\sqrt 3 } \over {12}} = {{2\pi {R^3}\sqrt 3  + 2\pi {R^3}} \over {12}} \)

\(\;\;\;\;= {{\pi {R^3}\left( {\sqrt 3  + 1} \right)} \over 6}\).

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com