Bài tập 15 trang 80 Tài liệu dạy – học Toán 8 tập 1


Giải bài tập Chứng minh các đẳng thức sau:

Đề bài

Chứng minh các đẳng thức sau:

a) \(\left( {{a^2} - {1 \over a}} \right).\left( {{{a + 1} \over {{a^2} + 1 + a}} - {1 \over {1 - a}}} \right) = 2a + 1\) ;

b) \({3 \over {{x^2} - 3x}} - {{{x^2}} \over {3 - x}} = x + 3 + {{9x + 3} \over {{x^2} - 3x}}\) ;

Lời giải chi tiết

\(\eqalign{  & a)\,\,\left( {{a^2} - {1 \over a}} \right)\left( {{{a + 1} \over {{a^2} + 1 + a}} - {1 \over {1 - a}}} \right) = 2a + 1  \cr  & VT = {{{a^3} - 1} \over a}.{{\left( {a + 1} \right)\left( {1 - a} \right) - \left( {{a^2} + 1 + a} \right)} \over {\left( {{a^2} + 1 + a} \right)\left( {1 - a} \right)}}  \cr  & \,\,\,\,\,\,\, = {{ - \left( {1 - {a^3}} \right)} \over a}.{{1 - {a^2} - {a^2} - 1 - a} \over {\left( {{a^2} + 1 + a} \right)\left( {1 - a} \right)}}  \cr  & \,\,\,\,\,\,\, = {{ - \left( { - 2{a^2} - a} \right)} \over a} = {{a\left( {2a + 1} \right)} \over a} = 2a + 1 = VP  \cr  & b)\,\,{3 \over {{x^2} - 3x}} - {{{x^2}} \over {3 - x}} = x + 3 + {{9x + 3} \over {{x^2} - 3x}}  \cr  & VT = {3 \over {x\left( {x - 3} \right)}} + {{{x^2}} \over {x - 3}} = {{3 + {x^3}} \over {x\left( {x + 3} \right)}}  \cr  & VP = {{\left( {x + 3} \right)\left( {{x^2} - 3x} \right) + 9x + 3} \over {{x^2} - 3x}}  \cr  & \,\,\,\,\,\,\, = {{{x^3} - 3{x^2} + 3{x^2} - 9x + 9x + 3} \over {{x^2} - 3x}} = {{{x^3} + 3} \over {x\left( {x - 3} \right)}} = VT \cr} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2020 - 2021, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài