Bài tập 14 trang 80 Tài liệu dạy – học Toán 8 tập 1


Giải bài tập Áp dụng tính chất phân phối để thực hiện phép tính:

Đề bài

Áp dụng tính chất phân phối để thực hiện phép tính:

a) \({{{x^2} + {y^2}} \over {{x^2} - 2xy + {y^2}}}.{{x - y} \over {{x^2}}} - {{2{y^2}} \over {{x^2} - 2xy + {y^2}}}.{{x - y} \over {{x^2}}}\) ;

b) \(\left( {{{{x^3}} \over {x - 1}} + {x^2} - x + 1} \right).{{1 - x} \over x}\) .

Lời giải chi tiết

\(\eqalign{  & a)\,\,{{{x^2} + {y^2}} \over {{x^2} - 2xy + {y^2}}}.{{x - y} \over {{x^2}}} - {{2{y^2}} \over {{x^2} - 2xy + {y^2}}}.{{x - y} \over {{x^2}}}  \cr  &  = \left( {{{{x^2} + {y^2}} \over {{x^2} - 2xy + {y^2}}} - {{2{y^2}} \over {{x^2} - 2xy + {y^2}}}} \right){{x - y} \over {{x^2}}}  \cr  &  = {{{x^2} + {y^2} - 2{y^2}} \over {{{\left( {x - y} \right)}^2}}}.{{x - y} \over {{x^2}}} = {{{x^2} - {y^2}} \over {x - y}}.{1 \over {{x^2}}}  \cr  &  = {{\left( {x - y} \right)\left( {x + y} \right)} \over {x - y}}.{1 \over {{x^2}}} = {{x + y} \over {{x^2}}}  \cr  & b)\,\,\left( {{{{x^3}} \over {x - 1}} + {x^2} - x + 1} \right).{{1 - x} \over x}  \cr  &  = {{{x^3}} \over {x - 1}}.{{1 - x} \over x} + {{{x^2}\left( {1 - x} \right)} \over x} - {{x\left( {1 - x} \right)} \over x} + {{1\left( {1 - x} \right)} \over x}  \cr  &  = {{ - {x^2}\left( {x - 1} \right)} \over {x - 1}} + x\left( {1 - x} \right) - \left( {1 - x} \right) + {{1 - x} \over x}  \cr  &  =  - {x^2} + x - {x^2} - 1 + x + {{1 - x} \over x}  \cr  &  =  - 2{x^2} + 2x - 1 + {{1 - x} \over x} \cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài