Bài 6 trang 75 Tài liệu dạy – học Toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC vuông cân tại A, điểm M thuộc cạnh BC và AM = m.

Đề bài

Cho tam giác ABC vuông cân tại A, điểm M thuộc cạnh BC và AM = m. Tính tổng \(M{B^2} + M{C^2}\) theo m.

Phương pháp giải - Xem chi tiết

Từ M kẻ ME vuông góc với AB, MF vuông góc với AC, áp dụng định lý Pythagore vào các tam giác vuông để tính \(M{B^2} + M{C^2}\) theo m.

Lời giải chi tiết

Từ M kẻ ME vuông góc với AB, MF vuông góc với AC.

Dễ thấy\( \Rightarrow \)\(\Delta EBM\) vuông cân tại E, \(\Delta FMC\) vuông cân tại F và AEMF là hình chữ nhật.

Áp dụng định lý Pythagore vào các tam giác EBM, FMC, AEF, ta có:

\(\begin{array}{l}M{B^2} = M{E^2} + B{E^2} = 2M{E^2}\\M{C^2} = M{F^2} + F{C^2} = 2M{F^2}\\ \Rightarrow M{B^2} + M{C^2} = 2\left( {M{E^2} + M{F^2}} \right)\,(1)\end{array}\)

Mà \(A{M^2} = E{F^2} = M{E^2} + M{F^2}\)(AEMF là hình chữ nhật)  (2)

Từ (1) và (2) \( \Rightarrow M{B^2} + M{C^2} = 2A{M^2} = 2{m^2}\)

Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng