
Đề bài
Cho tam giác ABC cân tại A và nội tiếp đường tròn O. Tia AO cắt BC và đường tròn O tại D và E.
a) Chứng minh \(AD \bot BC\) và EB = EC.
b) Trên cung nhỏ AC lấy điểm N sao cho AN < NC. Tia AN cắt tia BC tại M, tia NE cắt BC tại I. Chứng minh IB.IC = IE.IN và IB.MC = IC.MB.
c) Chứng minh \(\widehat {AMB} = \widehat {ACN}\) .
d) Tiếp tuyến tại N của đường tròn O cắt BM tại K. Chứng minh K là trung điểm của IM.
Phương pháp giải - Xem chi tiết
a) Chứng minh \(\Delta AOB = \Delta AOC\), chứng minh \(AO\) là phân giác của \(\widehat {BAC}\). Chúng minh \(\Delta ABE = \Delta ACE\).
b) +) Chứng minh .
+) Chứng minh NE và NM lần lượt là phân giác trong và ngoài của \(\widehat {BNC}\), sử dụng tính chất đường phân giác.
c) Chứng minh \(\widehat {AMB};\,\,\widehat {ACN}\) cùng bằng \(\widehat {AEN}\).
d) Chứng minh tam giác KIN và KMN cân tại K.
Lời giải chi tiết
a) Xét \(\Delta AOB\) và \(\Delta AOC\) có:
\(\begin{array}{l}AB = AC\,\,\left( {gt} \right);\\OA\,\,chung;\\OB = OC = R;\end{array}\)
\( \Rightarrow \Delta AOB = \Delta AOC\,\,\left( {c.c.c} \right) \)
\(\Rightarrow \widehat {OAB} = \widehat {OAC} \Rightarrow AO\) là tia phân giác của \(\widehat {BAC}\).
Mà tam giác ABC cân tại A \( \Rightarrow \) Phân giác AO đồng thời là đường cao \( \Rightarrow AO \bot BC\).
Mà \(D \in AO \Rightarrow AD \bot BC\).
Xét \(\Delta ABE\) và \(\Delta ACE\) có :
\(\begin{array}{l}AB = AC\,\,\left( {gt} \right);\\AE\,\,chung\\\widehat {BAE} = \widehat {CAE}\,\,\left( {cmt} \right);\end{array}\)
\( \Rightarrow \Delta ABE = \Delta ACE\,\,\left( {c.g.c} \right) \)
\(\Rightarrow BE = CE\) (2 cạnh tương ứng).
b) +) Xét \(\Delta IBE\) và \(\Delta ICN\) có :
\(\widehat {BIE} = \widehat {NIC}\) (đối đỉnh) ;
\(\widehat {IBE} = \widehat {INC}\) (hai góc nội tiếp cùng chắn cung IN) ;
\( \Rightarrow \Delta IBE \sim \Delta INC\,\,\left( {g.g} \right) \)
\(\Rightarrow \dfrac{{IB}}{{IN}} = \dfrac{{IE}}{{IC}} \Rightarrow IB.IC = IE.IN\).
+) Ta có \(EB = EC\,\,\left( {cmt} \right) \Rightarrow cung\,EB = cung\,EC\) (hai dây bằng nhau căng 2 cung bằng nhau)
\( \Rightarrow \widehat {BNE} = \widehat {CNE}\) (trong 1 đường tròn, hai góc nội tiếp chắn 2 cung bằng nhau thì bằng nhau)
\( \Rightarrow NE\) là tia phân giác trong của \(\widehat {BNC}\).
Ta có: \(\widehat {ANE} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow AN \bot NE\) hay \(NM \bot NE\).
Mà NE là tia phân giác trong của \(\widehat {BNC}\) (cmt) \( \Rightarrow NM\) là tia phân giác ngoài của \(\widehat {BNC}\).
Áp dụng tính chất tia phân giác ta có:
\(\dfrac{{NB}}{{NC}} = \dfrac{{IB}}{{IC}};\,\,\dfrac{{NB}}{{NC}} = \dfrac{{MB}}{{MC}}\)
\(\Rightarrow \dfrac{{IB}}{{IC}} = \dfrac{{MB}}{{MC}} \)
\(\Rightarrow IB.MC = IC.MB.\)
c) Xét \(\Delta ANE\) và \(\Delta ADM\) có:
\(\begin{array}{l}\widehat {ANE} = \widehat {ADM} = {90^0};\\\widehat {EMA}\,\,chung;\end{array}\)
\( \Rightarrow \Delta ANE \sim \Delta ADM\,\,\left( {g.g} \right) \)\(\,\Rightarrow \widehat {AEN} = \widehat {AMD}\) (hai góc tương ứng).
Mà \(\widehat {AEN} = \widehat {ACN}\) (hai góc nội tiếp cùng chắn cung AN)
\( \Rightarrow \widehat {ACN} = \widehat {AMD}\) (đpcm).
d) Xét \(\Delta EBI\) và \(\Delta ENB\) có:
\(\widehat {BEN}\,\,chung;\)
\(\widehat {EBI} = \widehat {ENB}\) (trong 1 đường tròn, hai góc nội tiếp chắn 2 cung bằng nhau thì bằng nhau)
\( \Rightarrow \Delta EBI \sim \Delta ENB\,\,\left( {g.g} \right) \) \(\Rightarrow \widehat {EIB} = \widehat {EBN}\).
Mà \(\widehat {EBN} = \widehat {ENK}\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung EN).
\(\widehat {EIB} = \widehat {NIK}\) (đối đỉnh)
\( \Rightarrow \widehat {NIK} = \widehat {ENK} \Rightarrow \Delta KIN\) cân tại K \( \Rightarrow KN = KI\) (1).
Xét tam giác vuông MNI có: \(\widehat {NIK} + \widehat {KMN} = {90^0}\) (hai góc nhọn trong tam giác vuông phụ nhau)
\(\widehat {ENK} + \widehat {KNM} = \widehat {INM} = {90^0}\)
Mà \(\widehat {NIK} = \widehat {ENK}\,\,\left( {cmt} \right) \)
\(\Rightarrow \widehat {KMN} = \widehat {KNM} \Rightarrow \Delta KMN\) cân tại K \( \Rightarrow KM = KN\) (2)
Từ (1) và (2) \( \Rightarrow KM = KI\). Vậy K là trung điểm của IM.
Loigiaihay.com
Giải bài tập Từ điểm M nằm ngoài đường tròn (O), vẽ hai tiếp tuyến MA, MB đến đường tròn O (A, B là hai
Giải bài tập Cho tam giác ABC nhọn và nội tiếp đường tròn O. Hai đường cao BE, CF của tam giác ABC cắt
Giải bài tập Cho dây AB chắn một cung có số đo
Giải bài tập Dựng tam giác ABC biết BC = 3cm
Giải bài tập Cho tam giác ABC nội tiếp đường tròn (O). Gọi D, E, F theo thứ tự là điểm chính giữa các cung
Giải bài tập Cho đường tròn (O) và hai dây cung AB, CD bằng nhau và cắt tại điểm M khác O nằm bên trong đường tròn (C nằm trên cung nhỏ AB và B nằm trên cung nhỏ CD).
Giải bài tập Vẽ cung chứa góc
Giải bài tập Cho hai đường kính vuông góc AB và CD của đường tròn (O; R). Gọi I là một điểm trên cung
Giải bài tập Cho ba điểm A, B, C trên đường tròn (O). Tiếp tuyến tại A cắt dây cung CB kéo dài tại điểm M.
Giải bài tập Cho tam giác ABC cân tại A
Giải bài tập Cho đường tròn tâm O, đường kính AB. S là một điểm nằm bên ngoài đường tròn. SA và SB lần
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: