Bài 23 trang 96 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho đường tròn tâm O, đường kính AB. S là một điểm nằm bên ngoài đường tròn. SA và SB lần

Đề bài

Cho đường tròn tâm O, đường kính AB. S là một điểm nằm bên ngoài đường tròn. SA và SB lần lượt cắt đường tròn tại M và N. Gọi H là giao điểm của BM và AN. Chứng minh rằng SH vuông góc với AB.

Phương pháp giải - Xem chi tiết

Chứng minh H là trực tâm tam giác SAB.

Lời giải chi tiết

 

Ta có \(\widehat {AMB}\) và \(\widehat {ANB}\) là hai góc nội tiếp chắn nửa đường tròn đường kính AB

\( \Rightarrow \widehat {AMB} = \widehat {ANB} = {90^0}\).

\( \Rightarrow AN \bot SB;\,\,BM \bot SA\). Mà \(AN \cap BM = H \Rightarrow H\) là trực tâm tam giác SAB.

\( \Rightarrow SH \bot AB\) (đpcm).

 Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng