Bài 24 trang 96 Tài liệu dạy – học Toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC cân tại A

Đề bài

Cho tam giác ABC cân tại A và \(\widehat A = {50^o}\). Nửa đường tròn đường kính AC cắt AB tại D và cắt BC tại H. Tính số đo các cung AD, DH và HC.

Phương pháp giải - Xem chi tiết

+) Chứng minh tam giác ADC vuông tại D, sử dụng định lí đường trung tuyến trong tam giác vuông, chứng minh tam giác OAD cân tại O, tính \(\widehat {AOD}\).

+) Tương tự tính \(\widehat {HOC}\). Từ đó tính \(\widehat {DOH}\).

+) Sử dụng định lí: Số đo góc ở tâm bằng số đo cung bị chắn tính số đo các cung AD, DH và HC.

Lời giải chi tiết

 

Gọi O là trung điểm AC \( \Rightarrow O\) là tâm đường tròn đường kính AC.

+) Ta có \(\widehat {ADC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow \Delta ACD\) vuông tại D.

\( \Rightarrow DO = \dfrac{1}{2}AC = OC = OD\) (định lí đường trung tuyến trong tam giác vuông)

\( \Rightarrow \Delta OAD\) cân tại O \( \Rightarrow \widehat {OAD} = \widehat {ODA} = {50^0}\).

Xét tam giác OAD có \(\widehat {OAD} + \widehat {ODA} + \widehat {AOD} = {180^0}\) (tổng ba góc trong một tam giác)

\( \Rightarrow {50^0} + {50^0} + \widehat {AOD} = {180^0} \)

\(\Rightarrow {100^0} + \widehat {AOD} = {180^0} \)

\(\Rightarrow \widehat {AOD} = {180^0} - {100^0} = {80^0}\).

Mà \(\widehat {AOD}\) là góc ở tâm  \( \Rightarrow \widehat {AOD} = sdcung\,AD\) (số đo góc ở tâm bằng số đo cung bị chắn).

Vậy \(sd \;cung AD = 80^o\).

+) \(\Delta ABC\) cân tại A \( \Rightarrow \widehat {ABC} = \widehat {ACB}\).

Mà \(\widehat {ABC} + \widehat {ACB} + \widehat {BAC} = {180^0}\) (tổng ba góc trong 1 tam giác)

\( \Rightarrow \widehat {ABC} + \widehat {ACB} = {180^0} - \widehat {BAC} = {180^0} - {50^0} = {130^0}\).

\( \Rightarrow \widehat {ABC} = \widehat {ACB} = \dfrac{{{{130}^0}}}{2} = {65^0}.\)

Ta có \(\widehat {AHC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow \Delta AHC\) vuông tại H.

\( \Rightarrow HO = \dfrac{1}{2}AC = OA = OC\) (định lí đường trung tuyến trong tam giác vuông)

\( \Rightarrow \Delta OHC\) cân tại O \( \Rightarrow \widehat {OHC} = \widehat {OCH} = {65^0}\).

Xét tam giác OHC có : \(\widehat {OCH} + \widehat {OHC} + \widehat {HOC} = {180^0}\) (tổng ba góc trong 1 tam giác).

\( \Rightarrow {65^0} + {65^0} + \widehat {HOC} = {180^0} \)

\(\Rightarrow {130^0} + \widehat {HOC} = {180^0} \)

\(\Rightarrow \widehat {HOC} = {50^0}\).

\( \Rightarrow sdcung\,HC = \widehat {HOC} = {50^0}\) (số đo góc ở tâm bằng số đo cung bị chắn).

+) Ta có :

\(\begin{array}{l}\widehat {AOD} + \widehat {DOH} + \widehat {HOC} = \widehat {AOC} = {180^0} \\\Rightarrow {80^0} + \widehat {DOH} + {50^0} = {180^0}\\ \Rightarrow \widehat {DOH} = {180^0} - {130^0} = {50^0}\end{array}\)

\( \Rightarrow sdcung\,DH = \widehat {DOH} = {50^0}\)(số đo góc ở tâm bằng số đo cung bị chắn).

 Loigiaihay.com

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng