Bài 33 trang 119 SGK Toán 9 tập 1

Bình chọn:
4.3 trên 51 phiếu

Giải bài 33 trang 119 SGK Toán 9 tập 1. Trên hình 89 hai đường tròn tiếp xúc nhau tại A. Chứng minh rằng OC//O'D.

Đề bài

Trên hình 89 hai đường tròn tiếp xúc nhau tại \(A\). Chứng minh rằng \(OC//O'D\).

Phương pháp giải - Xem chi tiết

+) Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm. Tức là nếu \((O)\) và \((O')\) tiếp xúc nhau tại \(A\) thì \(O,\ A,\ O'\) thẳng hàng.

+) Nếu \(A,\ B\) thuộc \((O;\ R)\) thì \(OB=OA=R\) 

Lời giải chi tiết

Vì \((O)\) và \((O’)\) tiếp xúc nhau tại \(A\) (gt) ⇒ \(O,\ A,\ O’\) thẳng hàng.

Xét \(\Delta{OCA}\) có \(OC = OA= R\) nên tam giác cân tại \(O\). 

\( \Rightarrow \widehat {OAC} = \widehat {OC{\rm{A}}}\)                                   (1)

Tương tự ta có tam giác \(O'AD\) cân tại \(O'\) suy ra  \(\widehat {O'A{\rm{D}}} = \widehat {O'DA}\).  (2)

Lại có \(\widehat {OAC} = \widehat {O'{\rm{AD}}}\) (đối đỉnh)                             (3)

Từ (1), (2) và (3) suy ra \(\widehat {OC{\rm{A}}} = \widehat {O'DA}\) mà góc \(\widehat {OC{\rm{A}}}\) và \(\widehat {O'D{\rm{A}}}\) so le trong, do đó \(OC // O’D\) (đpcm)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay