Bài 3 trang 74 Tài liệu dạy – học Toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC vuông tại A đường cao AH có BC = 40 cm, AC = 36 cm. Tính AB, BH, CH, và AH.

Đề bài

Cho tam giác ABC vuông tại A đường cao AH có BC = 40 cm, AC = 36 cm. Tính AB, BH, CH, và AH.

Phương pháp giải - Xem chi tiết

Áp dụng định lý Pythagore và hệ thức lượng trong tam giác vuông để tính.

Lời giải chi tiết

Áp dụng định lý Pythagore vào tam giác ABC vuông tại A:

\(A{B^2} = B{C^2} - A{C^2} \)\(\,= {40^2} - {36^2} = 304\)

\(\Rightarrow AB = \sqrt {304}  = 4\sqrt {19} \)(cm)

Áp dụng hệ thức lượng trong tam giác vuông ABC đường cao AH:

\(A{C^2} = CH.BC\)

\(\Rightarrow CH = \dfrac{{A{C^2}}}{{BC}} = \dfrac{{{{36}^2}}}{{40}} = \dfrac{{162}}{5}\) (cm)

\(BH = BC - CH = 40 - \dfrac{{162}}{5} = \dfrac{{38}}{5}\)(cm)

\(A{H^2} = BH.CH = \dfrac{{38}}{5}.\dfrac{{162}}{5} = \dfrac{{6156}}{{25}} \)

\(\Rightarrow AH = \dfrac{{18\sqrt {19} }}{5}\)(cm)

Loigiaihay.com

Các bài liên quan: - Bài tập - Chủ đề 1 : Một số hệ thức về cạnh và đường cao trong tam giác vuông

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu