Bài 17 trang 19 Tài liệu dạy – học Toán 8 tập 1


Giải bài tập Tìm giá trị nhỏ nhất của các biểu thức sau:

Đề bài

Tìm giá trị nhỏ nhất của các biểu thức sau:

a) \(M = {x^2} + 4x + 5\)

b) \(N = 9{x^2} - 6x + 6\)

Lời giải chi tiết

\(a)\,\,M = {x^2} + 4x + 5 = \left( {{x^2} + 4x + 4} \right) + 1 = {\left( {x + 2} \right)^2} + 1 \ge 1\)

Dấu “=” xảy ra \( \Leftrightarrow x + 2 = 0 \Leftrightarrow x =  - 2\)

Vậy giá trị nhỏ nhất của biểu thức M là 1.

\(b)\,\,N = 9{x^2} - 6x + 6 = \left( {9{x^2} - 6x + 1} \right) + 5 = {\left( {3x - 1} \right)^2} + 5 \ge 5\)

Dấu “=” xảy ra \( \Leftrightarrow 3x - 1 = 0 \Leftrightarrow 3x = 1 \Leftrightarrow x = {1 \over 3}\)

Vậy giá trị nhỏ nhất của biểu thức N là 5.

Loigiaihay.com


Bình chọn:
3.9 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí