Thử tài bạn trang 104 Tài liệu dạy – học Toán 7 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho tam giác ABC cân tại A (hình 20) có BE và CD là hai đường trung tuyến cắt nhau tại F. Biết BE = 9 cm.

Đề bài

Cho tam giác ABC cân tại A (hình 20) có BE và CD là hai đường trung tuyến cắt nhau tại F. Biết BE  = 9 cm.

Tính độ dài đoạn thẳng DF.

 

Lời giải chi tiết

∆ABC cân tại A (gt) => AB = AC.

∆ABC có BE, CD là hai đường trung tuyến cắt nhau tại F (gt)

=> E, D lần lượt là trung điểm của AC, AB và F là trọng tâm của tam giác ABC

Do đó \(AE = {1 \over 2}AC,AD = {1 \over 2}AB,CF = {2 \over 3}CD.\)

Xét ∆ABE và ∆ACD có: AB = AC, \(\widehat {BAE}\) (chung)

AE = AD (\(AE = {1 \over 2}AC = {1 \over 2}AB = AD\))

Do đó ∆ABE = ∆ACD (c.g.c) => BE = CD. Nên CD = 9cm

Ta có \(CF = {2 \over 3}CD = {2 \over 3}.9 = 6(cm)\)

Mà CF + DF = CD (F nằm giữa C, D)

6 + DF = 9 => DF = 9 – 6 = 3 (cm).

Loigiaihay.com

Các bài liên quan: - 1. Tính chất ba đường trung tuyến của tam giác