Bài 92 trang 150 SBT toán 7 tập 1


Đề bài

Chứng minh rằng tam giác \(ABC\) vẽ trên giấy kẻ ô vuông (hình 67) là tam giác vuông cân.

Phương pháp giải - Xem chi tiết

- Áp dụng định lí Pytago: Trong tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.

- Định lí Pytago đảo: Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.

Lời giải chi tiết

Đặt độ dài cạnh mỗi ô vuông là \(1\) (đơn vị độ dài)

Như vậy từ hình vẽ ta có:

AB là cạnh huyền của tam giác vuông có hai cạnh góc vuông là 2 và 1

BC là cạnh huyền của tam giác vuông có hai cạnh góc vuông là 2 và 1

AC là cạnh huyền của tam giác vuông có hai cạnh góc vuông là 3 và 1

Áp dụng định lí Pytago ta có:

\(\eqalign{
& {\rm{A}}{B^2} = {1^2} + {2^2} = 1 + 4 = 5 \cr 
& B{C^2} = {1^2} + {2^2} = 1 + 4 = 5 \cr 
& A{C^2} = {3^2} + {1^2} = 9 + 1 = 10 \cr} \)

\( \Rightarrow A{C^2} = A{B^2} + B{C^2}\)

Theo định lí Pytago đảo ta có \(∆ABC\) vuông tại \(B.\)

Mặt khác: \(A{B^2} = B{C^2} = 5\)

\( \Rightarrow  AB = BC\) (vì độ dài đoạn thẳng luôn dương).

Vậy \(∆ABC\) vuông cân tại \(B.\)

Loigiaihay.com


Bình chọn:
4.3 trên 8 phiếu

Các bài liên quan: - Bài 7. Định lí Py-ta-go

>> Học trực tuyến lớp 7 trên Tuyensinh247.com cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài