Bài 88 trang 150 SBT toán 7 tập 1>
Giải bài 88 trang 150 sách bài tập toán 7 tập 1. Tính độ dài các cạnh góc vuông của một tam giác vuông cân có cạnh huyền bằng 2cm ...
Đề bài
Tính độ dài các cạnh góc vuông của một tam giác vuông cân có cạnh huyền bằng:
a) \(2cm \)
b) \(\sqrt 2 cm\)
Phương pháp giải - Xem chi tiết
Áp dụng định lí Pytago: Trong tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.
Lời giải chi tiết
Xét tam giác \(ABC\) vuông cân tại \(A\).
Giả sử \(AB=AC=x (cm)\; (x > 0)\).
Áp dụng định lý Pytago vào \(\Delta ABC\) vuông tại A, ta có:
\(\begin{array}{l}
A{B^2} + A{C^2} = B{C^2}\\
\Rightarrow {x^2} + {x^2} = B{C^2}\\
\Rightarrow 2{x^2} = B{C^2}\\
\Rightarrow {x^2} = \dfrac{{B{C^2}}}{2}\end{array}\)
a) \(BC=2cm\)
\( \Rightarrow {x^2} = \dfrac{{{2^2}}}{2} = 2 \Rightarrow x = \sqrt 2 \left( {cm} \right)\)
b) \(BC = \sqrt 2 cm\)
\( \Rightarrow {x^2} = \dfrac{{{{\left( {\sqrt 2 } \right)}^2}}}{2} = 1 \Rightarrow x = 1\left( {cm} \right)\).
- Bài 89 trang 150 SBT toán 7 tập 1
- Bài 90 trang 150 SBT toán 7 tập 1
- Bài 91 trang 150 SBT toán 7 tập 1
- Bài 92 trang 150 SBT toán 7 tập 1
- Bài 7.1, 7.2, 7.3 phần bài tập bổ sung trang 150, 151 SBT toán 7 tập 1
>> Xem thêm