Bài 77 trang 51 SBT toán 7 tập 2


Giải bài 77 trang 51 sách bài tập toán 7. Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Kẻ đường cao AE của ∆ABC, đường cao AF của ∆ACD...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho tam giác \(ABC \) cân tại \(A.\) Vẽ điểm \(D\) sao cho \(A\) là trung điểm của \(BD.\) Kẻ đường cao \(AE\) của \(∆ABC,\) đường cao \(AF\) của \(∆ACD.\) Chứng minh rằng \(\widehat {EAF} = 90^\circ \) 

Phương pháp giải - Xem chi tiết

Sử dụng:

+) Trong một tam giác cân, đường trung tuyến ứng với cạnh đáy cũng đồng thời là đường phân giác của tam giác đó.

+) Hai góc kề bù có tổng bằng \(180^0.\) 

Lời giải chi tiết

Vì \(∆ABC\) cân tại \(A,\) có \(A{\rm{E}} \bot BC\left( {gt} \right)\)  

Hay \(AE\) là đường cao, suy ra \(AE\) cũng là đường phân giác của \(\widehat {BAC}\)

\( \Rightarrow \widehat {EAC} = \dfrac{1}{2}\widehat {BAC}\) (1)

Vì \(∆ABC\) cân tại \(A\) nên \(AB=AC\) mà \(AB=AD\) (vì A là trung điểm BD), suy ra: \(AD=AC=AB\) nên \(∆ADC\) cân tại \(A.\)

Vì \(∆ADC\) cân tại \(A,\) có \({\rm{AF}} \bot {\rm{DC}}\left( {gt} \right)\)

Hay\(AF\) là đường cao, suy ra \(AF\) cũng là đường phân giác của \(\widehat {CA{\rm{D}}}\)

\( \Rightarrow \widehat {FAC} = \dfrac{1}{2}\widehat {DAC}\) (2)

Mà \(\widehat {BAC}\) và \(\widehat {CA{\rm{D}}}\) là hai góc kề bù nên \(\widehat {BAC} + \widehat {DAC}=180^0\) (3)

Từ (1), (2), (3) ta có: \(\widehat {EAC} + \widehat {FAC} \)\(= \dfrac{1}{2}\left( {\widehat {BAC} + \widehat {DAC}} \right) \)\(= \dfrac{1}{2}.180^\circ  = 90^\circ \)

Hay \(\widehat {EAF} = 90^\circ \)

Suy ra: \(A{\rm{E}} \bot {\rm{AF}}\)

Loigiaihay.com


Bình chọn:
4.3 trên 13 phiếu
  • Bài 78 trang 51 SBT toán 7 tập 2

    Giải bài 78 trang 51 sách bài tập toán 7. Cho tam giác ABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.

  • Bài 79 trang 51 SBT toán 7 tập 2

    Giải bài 79 trang 51 sách bài tập toán 7. Cho tam giác ABC có AB = AC = 13cm, BC = 10cm. Tính độ dài đường trung tuyến AM.

  • Bài 80 trang 51 SBT toán 7 tập 2

    Giải bài 80 trang 51 sách bài tập toán 7. Cho tam giác ABC có góc B, góc C là các góc nhọn, AC > AB. Kẻ đường cao AH. Chứng minh rằng góc AHB nhỏ hơn góc HAC.

  • Bài 81* trang 51 SBT toán 7 tập 2

    Giải bài 81* trang 51 sách bài tập toán 7. Cho tam giác ABC. Qua mỗi đỉnh A, B, C kẻ các đường thẳng song song với cạnh đối diện, chúng cắt nhau tạo thành tam giác DEF (h.17) a) Chứng minh rằng A là trung điểm EF...

  • Bài 9.1, 9.2, 9.3 phần bài tập bổ sung trang 51, 52 SBT toán 7 tập 2

    Bài 9.1, 9.2, 9.3 phần bài tập bổ sung trang 51, 52 sách bài tập toán 7. Hãy chọn khẳng định đúng trong các khẳng định sau: (A) Trực tâm của một tam giác bao giờ cũng nằm trong tam giác...

>> Xem thêm

Tham Gia Group Dành Cho Lớp 7 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí