Bài 74 trang 51 SBT toán 7 tập 2


Giải bài 74 trang 51 sách bài tập toán 7. Cho tam giác ABC vuông tại A, đường cao AH. Tìm trực tâm của tam giác ABC, AHB, AHC.

Đề bài

Cho tam giác \(ABC\) vuông tại \(A,\) đường cao \(AH.\) Tìm trực tâm của tam giác \(ABC, AHB, AHC.\) 

Phương pháp giải - Xem chi tiết

Sử dụng: Ba đường cao của tam giác cùng đi qua một điểm. Điểm đó gọi là trực tâm của tam giác. 

Lời giải chi tiết

Xét \(∆ABC\) có \(\widehat {BAC} = 90^\circ \) nên \(AB \bot AC\)

Do đó, \(CA\) là đường cao xuất phát từ đỉnh \(C,\) \(BA\) là đường cao xuất phát từ đỉnh \(B.\) Giao điểm của hai đường này là \(A.\) Vậy \(A\) là trực tâm của \(∆ABC.\)

Xét \(∆AHB\) có \(AH \bot HB \)

Do đó, \(AH\) là đường cao xuất phát từ đỉnh \(A,\) \(BH\) là là đường cao xuất phát từ đỉnh \(B.\) Giao điểm của hai đường này là \(H.\) Vậy \(H\) là trực tâm của \(∆AHB\)

Xét \(∆AHC\) có \(AH \bot HC\)

Do đó, \(AH\) là đường cao xuất phát từ đỉnh \(A,\) \(CH\) là đường cao xuất phát từ đỉnh \(C.\) Giao điểm của hai đường này là \(H\)

Vậy \(H\) là trực tâm của \(∆AHC.\)

Loigiaihay.com


Bình chọn:
4 trên 10 phiếu

>> Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài