Bài 64 trang 87 SBT toán 8 tập 1


Giải bài 64 trang 87 sách bài tập toán 8. Chứng minh rằng điểm I đối xứng với điểm K qua AH...

Đề bài

Cho tam giác \(ABC\) cân tại \(A,\) đường cao \(AH.\) Trên cạnh \(AB\) lấy điểm \(I,\) trên cạnh \(AC\) lấy điểm \(K\) sao cho \(AI = AK.\) Chứng minh rằng điểm \(I\) đối xứng với điểm \(K\) qua  \(AH.\)

Phương pháp giải - Xem chi tiết

+) Sử dụng định nghĩa: Hai điểm gọi là đối xứng với nhau qua đường thẳng \(d\) nếu \(d\) là đường trung trực của đoạn thẳng nối hai điểm đó.

+) Trong tam giác cân, đường trung tuyến ứng với cạnh đáy cũng là đường trung trực, đường phân giác.

Lời giải chi tiết

\(∆ ABC\) cân tại \(A\) có \(AH ⊥ BC\;\; (gt)\)

Suy ra \(AH\) là tia phân giác \(\widehat A\)

Lại có \(AI = AK\;\; (gt)\)

\(⇒∆ AIK\) cân tại \(A\)

\(∆ AIK\) cân tại \(A\) có \(AH\) là tia phân giác \(\widehat A\) nên \(AH\) cũng là đường trung trực của \(IK\)

Vậy \(I\) đối xứng với \(K\) qua \(AH.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 11 phiếu

Các bài liên quan: - Bài 6. Đối xứng trục

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài