Bài 6 trang 156 SBT toán 8 tập 1


Đề bài

a) Vẽ hình và tính số đường chéo của ngũ giác, lục giác

b) Chứng minh rằng hình n – giác có tất cả \(\dfrac{{n.(n - 3)}}{2}\) đường chéo.

Phương pháp giải - Xem chi tiết

a) Bước 1: Tính số đường chéo được vẽ từ tất cả các đỉnh.

Bước 2: Do mỗi đường chéo được tính hai lần nên ta tính được số đường chéo của n-giác tương ứng.

b) Bước 1: Qua mỗi đỉnh, ta tính được vẽ được bao nhiêu đường chéo

Bước 2: Do mỗi đường chéo được tính hai lần nên ta tính được có tất cả bao nhiêu đường chéo.

Lời giải chi tiết

a) Từ mỗi đỉnh của ngũ giác vẽ được hai đường chéo. Ngũ giác có \(5\) đỉnh ta kẻ được \(5.2 = 10\) đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy ngũ giác có tất cả \(5\) đường chéo.

Từ mỗi đỉnh của lục giác vẽ được ba đường chéo. Lục giác có \(6\) đỉnh ta kẻ được \(6.3 = 18\) đường chéo, trong đó mỗi đường chéo được tính hai lần. Vậy lục giác có tất cả là \(9\) đường chéo.

b) Từ mỗi đỉnh của n-giác (lồi) vẽ được \((n-1)\) đoạn thẳng nối đỉnh đó với \((n-1)\) đỉnh còn lại của đa giác, trong đó có \(2\) đoạn thẳng trùng với hai cạnh của đa giác. Vậy, qua mỗi đỉnh của n-giác (lồi) vẽ được \((n-3)\) đường chéo.

Hình n-giác có \(n\) đỉnh nên vẽ được \(n.(n-3)\) đường chéo, trong đó mỗi đường chéo được tính hai lần.

Vậy, hình \(n\) giác có tất cả \(\dfrac{{n.(n - 3)}}{2}\) đường chéo. 

Loigiaihay.com


Bình chọn:
4.3 trên 4 phiếu

Các bài liên quan: - Bài 1. Đa giác. Đa giác đều

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.