Bài 59 trang 14 SBT toán 8 tập 1>
Giải bài 59 trang 14 sách bài tập toán 8. Tìm giá trị lớn nhất (hoặc nhỏ nhất) của các biểu thức sau:...
Tìm giá trị lớn nhất (hoặc nhỏ nhất) của các biểu thức sau:
LG a
\(\) \(A= {x^2} - 6x + 11\)
Phương pháp giải:
Sử dụng hằng đẳng thức để đánh giá các biểu thức đã cho.
\(\) \( (A-B)^2+m \ge m\) với mọi \(A,\,B.\) Dấu \("="\) xảy ra khi \(A=B\).
Lời giải chi tiết:
\(\) \(A = {x^2} - 6x + 11\) \( = {x^2} - 2.3x + 9 + 2 \)
\(= {\left( {x - 3} \right)^2} + 2\)
Ta có: \({\left( {x - 3} \right)^2} \ge 0 \Rightarrow {\left( {x - 3} \right)^2} + 2 \ge 2\)
\( \Rightarrow A \ge 2\). Vậy \(A = 2\) là giá trị bé nhất của biểu thức khi \(x-3=0\Rightarrow x = 3\)
LG b
\(\) \(B = 2{x^2} + 10x - 1\)
Phương pháp giải:
Sử dụng hằng đẳng thức để đánh giá các biểu thức đã cho.
\(\) \((A+B)^2+m \ge m\) với mọi \(A,\,B.\) Dấu \("="\) xảy ra khi \(A=-B\).
Lời giải chi tiết:
\(\) \( B= 2{x^2} + 10x – 1\)
\(=\displaystyle 2\left( {{x^2} + 5x - {1 \over 2}} \right)\)
\(=\displaystyle 2\left[ {x^2 + 2.{5 \over 2}x + {{\left( {{5 \over 2}} \right)}^2} - {{\left( {{5 \over 2}} \right)}^2} - {1 \over 2}} \right]\)
\(=\displaystyle 2\left[ {{{\left( {x + {5 \over 2}} \right)}^2} - {{25} \over 4} - {2 \over 4}} \right] \)
\(=\displaystyle 2\left[ {{{\left( {x + {5 \over 2}} \right)}^2} - {{27} \over 4}} \right]\)
\(=\displaystyle 2{\left( {x + {5 \over 2}} \right)^2} - {{27} \over 2} \)
Vì \(\displaystyle{\left( {x + {5 \over 2}} \right)^2} \ge 0 \)
\(\displaystyle\Rightarrow 2{\left( {x + {5 \over 2}} \right)^2} \ge 0\)
\( \displaystyle\Rightarrow 2{\left( {x + {5 \over 2}} \right)^2} - {{27} \over 2} \ge - {{27} \over 2}\)
\( \displaystyle\Rightarrow B \ge -{{27} \over 2}\).
Vậy \( B=\displaystyle - {{27} \over 2}\) là giá trị nhỏ nhất khi \(\displaystyle { {x + {5 \over 2}} }=0\Rightarrow x = \displaystyle - {5 \over 2}\)
LG c
\(\) \(C = 5x - {x^2}\)
Phương pháp giải:
Sử dụng hằng đẳng thức để đánh giá các biểu thức đã cho.
\(\) \(m-(A-B)^2 \le m\) với mọi \(A,\,B.\) Dấu \("="\) xảy ra khi \(A=B\).
Lời giải chi tiết:
\(\) \( C= 5x - {x^2}\) \( = - ({x^2} - 5x) \)
\(= \displaystyle - \left[ {{x^2} - 2.{5 \over 2}x + {{\left( {{5 \over 2}} \right)}^2} - {{\left( {{5 \over 2}} \right)}^2}} \right]\)
\( =\displaystyle - \left[ {{{\left( {x - {5 \over 2}} \right)}^2} - {{25} \over 4}} \right]\)
\( = \displaystyle - {\left( {x - {5 \over 2}} \right)^2} + {{25} \over 4}\)
Vì \(\displaystyle{\left( {x - {5 \over 2}} \right)^2} \ge 0 \)
\(\Rightarrow - \displaystyle{\left( {x - {5 \over 2}} \right)^2} \le 0 \)
\(\Rightarrow - \displaystyle {\left( {x - {5 \over 2}} \right)^2} + {{25} \over 4} \le {{25} \over 4}\)
\( \Rightarrow C \le \displaystyle {{25} \over 4}\).
Vậy \( C=\displaystyle {{25} \over 4}\) là giá trị lớn nhất khi \(\displaystyle x - {5 \over 2}=0 \Rightarrow x = \displaystyle{5 \over 2}\)
Loigiaihay.com
- Bài 1.1 phần bài tập bổ sung trang 14 SBT toán 8 tập 1
- Bài 1.2 phần bài tập bổ sung trang 14 SBT toán 8 tập 1
- Bài 1.3 phần bài tập bổ sung trang 14 SBT toán 8 tập 1
- Bài 1.4 phần bài tập bổ sung trang 15 SBT toán 8 tập 1
- Bài 1.5 phần bài tập bổ sung trang 15 SBT toán 8 tập 1
>> Xem thêm