Bài 1.3 phần bài tập bổ sung trang 14 SBT toán 8 tập 1


Giải bài 1.3 phần bài tập bổ sung trang 14 sách bài tập toán 8. Phân tích các đa thức sau thành nhân tử:...

Lựa chọn câu để xem lời giải nhanh hơn

Phân tích các đa thức sau thành nhân tử:

LG a

\(\) \(45 + {x^3} - 5{x^2} - 9x\)

Phương pháp giải:

+)  Sử dụng phương pháp nhóm các hạng tử một cách thích hợp để xuất hiện nhân tử chung và sử dụng hằng đẳng thức: \(A^2-B^2=(A-B)(A+B)\) 

Giải chi tiết:

\(\) \(45 + {x^3} - 5{x^2} - 9x\)

\( = \left( {{x^3} - 5{x^2}} \right) - \left( {9x - 45} \right)\)

\( = {x^2}\left( {x - 5} \right) - 9\left( {x - 5} \right)\)

\( = \left( {x - 5} \right)\left( {{x^2} - 9} \right) \)

\(= \left( {x - 5} \right)\left( {x - 3} \right)\left( {x + 3} \right)\)

LG b

\(\) \({x^4} - 2{x^3} - 2{x^2} - 2x - 3\)

Phương pháp giải:

+)  Sử dụng phương pháp nhóm các hạng tử một cách thích hợp để xuất hiện nhân tử chung và sử dụng hằng đẳng thức: \(A^2-B^2=(A-B)(A+B)\) 

Giải chi tiết:

\(\) \({x^4} - 2{x^3} - 2{x^2} - 2x - 3\)

\( = \left( {{x^4} - 1} \right) - \left( {2{x^3} + 2{x^2}} \right) - \left( {2x + 2} \right)\)

\(= \left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right) - 2{x^2}\left( {x + 1} \right)\)\( - 2\left( {x + 1} \right) \)

\(= \left( {{x^2} + 1} \right)\left( {x - 1} \right)\left( {x + 1} \right) - 2{x^2}\left( {x + 1} \right)\)\( - 2\left( {x + 1} \right)\)

\(= \left( {x + 1} \right)\left[ {\left( {{x^2} + 1} \right)\left( {x - 1} \right) - 2{x^2} - 2} \right] \)

\(  = \left( {x + 1} \right)\left[ {\left( {{x^2} + 1} \right)\left( {x - 1} \right) - 2\left( {{x^2} + 1} \right)} \right]\)

\(= \left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {x - 1 - 2} \right) \)

\( = \left( {x + 1} \right)\left( {{x^2} + 1} \right)\left( {x - 3} \right) \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 13 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài