Bài 57 trang 14 SBT toán 8 tập 1


Giải bài 57 trang 14 sách bài tập toán 8. Phân tích các đa thức sau thành nhân tử:...

Lựa chọn câu để xem lời giải nhanh hơn

Phân tích các đa thức sau thành nhân tử:

LG a

\(\) \({x^3} - 3{x^2} - 4x + 12\)

Phương pháp giải:

Sử dụng phương pháp nhóm các hạng tử một cách thích hợp để xuất hiện nhân tử chung.

Lời giải chi tiết:

\(\) \({x^3} - 3{x^2} - 4x + 12\) \( = \left( {{x^3} - 3{x^2}} \right) - \left( {4x - 12} \right)\)

\( = {x^2}\left( {x - 3} \right) - 4\left( {x - 3} \right)\)

\( = \left( {x - 3} \right)\left( {{x^2} - 4} \right) \)

\(= \left( {x - 3} \right)\left( {x + 2} \right)\left( {x - 2} \right)\)

LG b

\(\) \({x^4} - 5{x^2} + 4\)

Phương pháp giải:

Sử dụng phương pháp tách một hạng tử thành nhiều hạng tử rồi nhóm các hạng tử một cách thích hợp để xuất hiện nhân tử chung

Lời giải chi tiết:

\(\) \({x^4} - 5{x^2} + 4\)

\( = {x^4} - 4{x^2} - {x^2} + 4 \)

\(= \left( {{x^4} - 4{x^2}} \right) - \left( {{x^2} - 4} \right)\)

\( = {x^2}\left( {{x^2} - 4} \right) - \left( {{x^2} - 4} \right) \)

\(= \left( {{x^2} - 4} \right)\left( {{x^2} - 1} \right)\)

\( = \left( {x + 2} \right)\left( {x - 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)\)

LG c

\(\) \({\left( {x + y + z} \right)^3} - {x^3} - {y^3} - {z^3}\)

Phương pháp giải:

Sử dụng hằng đẳng thức: \( (A+B)^3=A^3+3A^2.B+3A.B^2+B^3\)

Lời giải chi tiết:

\(\) \({\left( {x + y + z} \right)^3} - {x^3} - {y^3} - {z^3}\)

\( = {\left[ {\left( {x + y} \right) + z} \right]^3} - {x^3} - {y^3} - {z^3}\)

\( = {\left( {x + y} \right)^3} + 3{\left( {x + y} \right)^2}z\)\( + 3\left( {x + y} \right){z^2} + {z^3} - {x^3} - {y^3} - {z^3}\)

\(= {x^3} + {y^3} + 3x^2y+3xy^2 + 3{\left( {x + y} \right)^2}z\)\(+ 3\left( {x + y} \right){z^2} - {x^3} - {y^3} \)

\(= {x^3} + {y^3} + 3xy\left( {x + y} \right) + 3{\left( {x + y} \right)^2}z\)\(+ 3\left( {x + y} \right){z^2} - {x^3} - {y^3} \)

\(=  3xy\left( {x + y} \right) + 3{\left( {x + y} \right)^2}z\)\(+ 3\left( {x + y} \right){z^2}\)

\(= 3\left( {x + y} \right)\left[ {xy + \left( {x + y} \right)z + {z^2}} \right] \)

\(= 3\left( {x + y} \right)\left[ {xy + xz + yz + {z^2}} \right] \)

\( = 3\left( {x + y} \right)\left[ {x\left( {y + z} \right) + z\left( {y + z} \right)} \right]\)

\( = 3\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.7 trên 24 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài