Bài 43 trang 58 SBT toán 9 tập 2


Giải bài 43 trang 58 sách bài tập toán 9. Cho phương trình x^2 + px - 5 = 0 có nghiệm là x1, x2.

Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình \({x^2} + px - 5 = 0\) có nghiệm là \(x_1;x_2\). Hãy lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau:

LG a

\(–x_1\) và \(-x_2\).

Phương pháp giải:

Áp dụng:

* Hệ thức Vi-ét:

Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

* Phương trình có hai nghiệm \(x_1;x_2\) có dạng: \(\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = 0\).

Lời giải chi tiết:

Phương trình \({x^2} + px - 5 = 0\) có hai nghiệm \(x_1\) và \(x_2\).

Theo hệ thức Vi-ét ta có: 

\(\eqalign{
& {x_1} + {x_2} = - {p \over 1} = - p \cr 
& {x_1}{x_2} = {{ - 5} \over 1} = - 5 \cr} \)    (1)

Hai số \(-x_1\) và \(-x_2\) là nghiệm của phương trình:

\(\left[ {x - \left( { - {x_1}} \right)} \right]\left[ {x - \left( { - {x_2}} \right)} \right] = 0 \)

\( \Leftrightarrow \left( {x + {x_1}} \right)\left( {x + {x_2}} \right) = 0\)

\( \Leftrightarrow {x^2} + {x_2}x +{x_1}x +{x_1} {x_2} = 0 \)

\( \Leftrightarrow {x^2} + \left( {{x_1} + {x_2}} \right)x + {x_1}{x_2} = 0 \;\;(2)  \)

Từ (1) và (2) phương trình phải tìm là: \({x^2} - px - 5 = 0\)

LG b

\(\displaystyle {1 \over {{x_1}}}\) và \(\displaystyle {1 \over {{x_2}}}\)

Phương pháp giải:

Áp dụng:

* Hệ thức Vi-ét:

Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

* Phương trình có hai nghiệm \(x_1;x_2\) có dạng: \(\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = 0\).

Lời giải chi tiết:

Phương trình \({x^2} + px - 5 = 0\) có hai nghiệm \(x_1\) và \(x_2\).

Theo hệ thức Vi-ét ta có:

\(\eqalign{
& {x_1} + {x_2} = - {p \over 1} = - p \cr 
& {x_1}{x_2} = {{ - 5} \over 1} = - 5 \cr} \)    (1)

Hai số \(\displaystyle {1 \over {{x_1}}}\) và \(\displaystyle {1 \over {{x_2}}}\) là nghiệm của phương trình:

\(\eqalign{
& \left( {x - {1 \over {{x_1}}}} \right)\left( {x - {1 \over {{x_2}}}} \right) = 0 \cr 
& \Leftrightarrow {x^2} - {1 \over {{x_2}}}x - {1 \over {{x_1}}}x + {1 \over {{x_1}}}.{1 \over {{x_2}}} = 0 \cr 
& \Leftrightarrow {x^2} - \left( {{1 \over {{x_1}}} + {1 \over {{x_2}}}} \right)x + {1 \over {{x_1}{x_2}}} = 0 \cr 
& \Leftrightarrow {x^2} - {{{x_1} + {x_2}} \over {{x_1}{x_2}}}x + {1 \over {{x_1}{x_2}}} = 0\;\;\;(3) \cr} \)

Từ (1) và (3) suy ra phương trình phải tìm là:

\(\eqalign{
& {x^2} - {{ - p} \over { - 5}}x + {1 \over { - 5}} = 0 \cr 
& \Leftrightarrow {x^2} - {p \over 5}x - {1 \over 5} = 0 \cr 
& \Leftrightarrow 5{x^2} - px - 1 = 0 \cr} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 7 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài