Bài 43 trang 58 SBT toán 9 tập 2>
Giải bài 43 trang 58 sách bài tập toán 9. Cho phương trình x^2 + px - 5 = 0 có nghiệm là x1, x2.
Cho phương trình \({x^2} + px - 5 = 0\) có nghiệm là \(x_1;x_2\). Hãy lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau:
LG a
\(–x_1\) và \(-x_2\).
Phương pháp giải:
Áp dụng:
* Hệ thức Vi-ét:
Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
* Phương trình có hai nghiệm \(x_1;x_2\) có dạng: \(\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = 0\).
Lời giải chi tiết:
Phương trình \({x^2} + px - 5 = 0\) có hai nghiệm \(x_1\) và \(x_2\).
Theo hệ thức Vi-ét ta có:
\(\eqalign{
& {x_1} + {x_2} = - {p \over 1} = - p \cr
& {x_1}{x_2} = {{ - 5} \over 1} = - 5 \cr} \) (1)
Hai số \(-x_1\) và \(-x_2\) là nghiệm của phương trình:
\(\left[ {x - \left( { - {x_1}} \right)} \right]\left[ {x - \left( { - {x_2}} \right)} \right] = 0 \)
\( \Leftrightarrow \left( {x + {x_1}} \right)\left( {x + {x_2}} \right) = 0\)
\( \Leftrightarrow {x^2} + {x_2}x +{x_1}x +{x_1} {x_2} = 0 \)
\( \Leftrightarrow {x^2} + \left( {{x_1} + {x_2}} \right)x + {x_1}{x_2} = 0 \;\;(2) \)
Từ (1) và (2) phương trình phải tìm là: \({x^2} - px - 5 = 0\)
LG b
\(\displaystyle {1 \over {{x_1}}}\) và \(\displaystyle {1 \over {{x_2}}}\)
Phương pháp giải:
Áp dụng:
* Hệ thức Vi-ét:
Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:
\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)
* Phương trình có hai nghiệm \(x_1;x_2\) có dạng: \(\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = 0\).
Lời giải chi tiết:
Phương trình \({x^2} + px - 5 = 0\) có hai nghiệm \(x_1\) và \(x_2\).
Theo hệ thức Vi-ét ta có:
\(\eqalign{
& {x_1} + {x_2} = - {p \over 1} = - p \cr
& {x_1}{x_2} = {{ - 5} \over 1} = - 5 \cr} \) (1)
Hai số \(\displaystyle {1 \over {{x_1}}}\) và \(\displaystyle {1 \over {{x_2}}}\) là nghiệm của phương trình:
\(\eqalign{
& \left( {x - {1 \over {{x_1}}}} \right)\left( {x - {1 \over {{x_2}}}} \right) = 0 \cr
& \Leftrightarrow {x^2} - {1 \over {{x_2}}}x - {1 \over {{x_1}}}x + {1 \over {{x_1}}}.{1 \over {{x_2}}} = 0 \cr
& \Leftrightarrow {x^2} - \left( {{1 \over {{x_1}}} + {1 \over {{x_2}}}} \right)x + {1 \over {{x_1}{x_2}}} = 0 \cr
& \Leftrightarrow {x^2} - {{{x_1} + {x_2}} \over {{x_1}{x_2}}}x + {1 \over {{x_1}{x_2}}} = 0\;\;\;(3) \cr} \)
Từ (1) và (3) suy ra phương trình phải tìm là:
\(\eqalign{
& {x^2} - {{ - p} \over { - 5}}x + {1 \over { - 5}} = 0 \cr
& \Leftrightarrow {x^2} - {p \over 5}x - {1 \over 5} = 0 \cr
& \Leftrightarrow 5{x^2} - px - 1 = 0 \cr} \)
Loigiaihay.com
- Bài 44 trang 58 SBT toán 9 tập 2
- Bài 6.1, 6.2, 6.3, 6.4 trang 58, 59 SBT toán 9 tập 2
- Bài 42 trang 58 SBT toán 9 tập 2
- Bài 41 trang 58 SBT toán 9 tập 2
- Bài 40 trang 57 SBT toán 9 tập 2
>> Xem thêm