Bài 39 trang 57 SBT toán 9 tập 2


Giải bài 39 trang 57 sách bài tập toán 9. a) Chứng tỏ rằng phương trình 3.x^2 + 2x - 21 = 0 có một nghiệm là -3. Hãy tìm nghiệm kia.

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng tỏ rằng phương trình \(3{x^2} + 2x - 21 = 0\) có một nghiệm là \(-3\). Hãy tìm nghiệm kia.

Phương pháp giải:

- Thay \(x=-3\) vào vế trái của phương trình đã cho, nếu cho kết quả bằng \(0\) thì \(x=-3\) là nghiệm của phương trình đã cho.

- Theo hệ thức Vi -ét ta có \({x_1}.{x_2} = \dfrac{c}{a}\), biết \(x_1=-3\) từ đó ta tính được \(x_2\).

Lời giải chi tiết:

Thay \(x = -3\) vào vế trái của phương trình ta được:

\(3.{\left( { - 3} \right)^2} + 2.\left( { - 3} \right) - 21 \)\(\,= 27 - 6 - 21 = 0\)

Vậy \(x = -3\) là nghiệm của phương trình \(3{x^2} + 2x - 21 = 0\).

Theo hệ thức Vi-ét ta có:

\(\displaystyle {x_1}{x_2} = {{ - 21} \over 3} \)

\(\displaystyle \Rightarrow  - 3.{x_2} = {{ - 21} \over 3} \Leftrightarrow {x_2} = {7 \over 3}\)

LG b

Chứng tỏ rằng phương trình \( - 4{x^2} - 3x + 115 = 0\) có một nghiệm là \(5\). Tìm nghiệm kia.

Phương pháp giải:

- Thay \(x=5\) vào vế trái của phương trình đã cho, nếu cho kết quả bằng \(0\) thì \(x=5\) là nghiệm của phương trình \( - 4{x^2} - 3x + 115 = 0\).

- Theo hệ thức Vi -ét ta có \({x_1}.{x_2} = \dfrac{c}{a}\), biết \(x_1=5\) từ đó ta tính được \(x_2\).

Lời giải chi tiết:

Thay \(x = 5\) vào vế trái của phương trình ta được:

\( - {4.5^2} - 3.5 + 115 \)\(\,=  - 100 - 15 + 115 = 0\)

Vậy \(x = 5\) là nghiệm của phương trình \( - 4{x^2} - 3x + 115 = 0\)

Theo hệ thức Vi-ét ta có:

\(\displaystyle {x_1}{x_2} = {{115} \over { - 4}}\)

\(\displaystyle \Rightarrow 5{x_2} =  - {{115} \over 4} \Leftrightarrow {x_2} =  - {{23} \over 4}\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 4 phiếu

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài