Bài 38 trang 57 SBT toán 9 tập 2


Giải bài 38 trang 57 sách bài tập toán 9. Dùng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình: a) x^2 - 6x + 8 = 0

Lựa chọn câu để xem lời giải nhanh hơn

Dùng hệ thức Vi-ét để tính nhẩm nghiệm của phương trình:

LG a

\({x^2} - 6x + 8 = 0\)

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

\({x^2} - 6x + 8 = 0 \)

\( \Delta ' = {\left( { - 3} \right)^2} - 1.8 = 9 - 8 = 1 > 0 \)

Phương trình có hai nghiệm phân biệt.

Theo hệ thức Vi-ét ta có:

\(\left\{ {\matrix{
{{x_1} + {x_2} = 6} \cr 
{{x_1}{x_2} = 8} \cr} \Leftrightarrow {x_1} = 2;{x_2} = 4} \right.\)

LG b

\({x^2} - 12x + 32 = 0\)

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

\({x_2} - 12x + 32 = 0 \)

\( \Delta ' = {\left( { - 6} \right)^2} - 1.32 \)\(\,= 36 - 32 = 4 > 0  \)

Phương trình có hai nghiệm phân biệt.

Theo hệ thức Vi-ét ta có:

\(\left\{ {\matrix{
{{x_1} + {x_2} = 12} \cr 
{{x_1}{x_2} = 32} \cr} \Leftrightarrow {x_1} = 4;{x_2} = 8} \right.\)

LG c

\({x^2} + 6x + 8 = 0\)

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

\({x^2} + 6x + 8 = 0 \)

\( \Delta ' = {3^2} - 1.8 = 9 - 8 = 1 > 0 \)

Phương trình có hai nghiệm phân biệt.

Theo hệ thức Vi-ét ta có:

\(\left\{ {\matrix{
{{x_1} + {x_2} = - 6} \cr 
{{x_1}{x_2} = 8} \cr}}\right. \) \(\Leftrightarrow {x_1} = - 2;{x_2} = - 4\)

LG d

\({x^2} - 3x - 10 = 0\)

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

\({x^2} - 3x - 10 = 0\)

Ta có: \(a = 1;c =  - 10 \Rightarrow ac < 0\)

Phương trình có hai nghiệm phân biệt.

Theo hệ thức Vi-ét ta có:

\(\left\{ {\matrix{
{{x_1} + {x_2} = 3} \cr 
{{x_1}{x_2} = - 10} \cr} \Leftrightarrow {x_1} = - 2} \right.;{x_2} = 5\)

LG e

\({x^2} + 3x - 10 = 0\)

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

\({x^2} + 3x - 10 = 0\)

Ta có \(a = 1;c =  - 10\Rightarrow ac < 0\)

Phương trình có hai nghiệm phân biệt.

Theo hệ thức Vi-ét ta có:

\(\left\{ {\matrix{
{{x_1} + {x_2} = - 3} \cr 
{{x_1}{x_2} = - 10} \cr} \Leftrightarrow {x_1} = 2;{x_2} = - 5} \right.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài