Bài 40 trang 57 SBT toán 9 tập 2


Giải bài 40 trang 57 sách bài tập toán 9. Dùng hệ thức Vi-ét để tìm nghiệm x2 của phương trình rồi tìm giá trị của m trong mỗi trường hợp sau ...

Lựa chọn câu để xem lời giải nhanh hơn

Dùng hệ thức Vi-ét để tìm nghiệm \(x_2\) của phương trình rồi tìm giá trị của \(m\) trong mỗi trường hợp sau:

LG a

Phương trình \({x^2} + mx - 35 = 0\), biết nghiệm \(x_1= 7\).

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

Phương trình \({x^2} + mx - 35 = 0\) có nghiệm \(x_1= 7\).

Theo hệ thức Vi-ét ta có: \({x_1}{x_2} =  - 35 \)

\(\Rightarrow 7{x_2} =  - 35 \Leftrightarrow {x_2} =  - 5\)

Theo hệ thức Vi-ét ta có:

\(\eqalign{
& {x_1} + {x_2} = - m \cr 
& \Rightarrow - m = 7 + \left( { - 5} \right) \cr&\Leftrightarrow - m = 2\cr& \Leftrightarrow m = - 2 \cr} \)

Vậy \(m = -2\) thì phương trình \({x^2} + mx - 35 = 0\) có nghiệm \(x_1= 7\) và nghiệm \(x_2= -5\).

LG b

Phương trình \({x^2} - 13x + m = 0,\) biết nghiệm \(x_1 = 12,5\).

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

Phương trình \({x^2} - 13x + m = 0\) có nghiệm \(x_1 = 12,5\).

Theo hệ thức Vi-ét ta có: \({x_1} + {x_2} = 13 \)

\(\Rightarrow 12,5 + {x_2} = 13 \Leftrightarrow {x_2} = 0,5\)

Theo hệ thức Vi-ét ta có: \({x_1}{x_2} = m\) \( \Rightarrow m = 12,5.0,5 = 6,25\)

Vậy \( m = 6,25 \) thì phương trình \({x^2} - 13x + m = 0\) có nghiệm \(x_1= 12,5\) và nghiệm \(x_2= 0,5\).

LG c

Phương trình \(4{x^2} + 3x - {m^2} + 3m = 0,\) biết nghiệm \(x_1 = -2\).

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

Phương trình \(4{x^2} + 3x - {m^2} + 3m = 0\) có nghiệm \(x_1= -2\).

Theo hệ thức Vi-ét ta có: \(\displaystyle {x_1} + {x_2} =  - {3 \over 4}\)

\(\displaystyle\Rightarrow  - 2 + {x_2} =  - {3 \over 4} \)

\(\displaystyle \Leftrightarrow {x_2}= - {3 \over 4}+2= {5 \over 4}\)

Theo hệ thức Vi-ét ta có: \(\displaystyle{x_1}{x_2} = {{ - {m^2} + 3m} \over 4}\)

\( \displaystyle \Rightarrow -2.{5 \over 4} = {{ - {m^2} + 3m} \over 4}\)

\(\displaystyle \Leftrightarrow {m^2} - 3m - 10 = 0 \)

\( \displaystyle \Delta _m= {\left( { - 3} \right)^2} - 4.1.\left( { - 10} \right)\)\(\, = 9 + 40 = 49 > 0 \) 

\( \Rightarrow \sqrt \Delta_m = \sqrt {49} = 7 \)

\( \displaystyle {m_1} = {{3 + 7} \over {2.1}} = 5 \)

\( \displaystyle {m_2} = {{3 - 7} \over {2.1}} = - 2  \)

Vậy \(m = 5\) hoặc \(m = -2\) thì phương trình \(4{x^2} + 3x - {m^2} + 3m = 0\) có nghiệm \(x_1= -2\) và nghiệm \(\displaystyle {x_2} = {5 \over 4}\).

LG d

Phương trình \(3{x^2} - 2\left( {m - 3} \right)x + 5 = 0,\) biết nghiệm \(\displaystyle {x_1} = {1 \over 3}\).

Phương pháp giải:

Áp dụng hệ thức Vi-ét:

- Nếu \({x_1},{\rm{ }}{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) thì:

\(\left\{\begin{matrix} x_{1} + x_{2} = -\dfrac{b}{a}& & \\ x_{1}x_{2}=\dfrac{c}{a} & & \end{matrix}\right.\)

Lời giải chi tiết:

Phương trình \(3{x^2} - 2\left( {m - 3} \right)x + 5 = 0\) có nghiệm \(\displaystyle{x_1} = {1 \over 3}\) .

Theo hệ thức Vi-ét ta có: \(\displaystyle {x_1}{x_2} = {5 \over 3} \)

\(\displaystyle \Rightarrow {1 \over 3}{x_2} = {5 \over 3} \Leftrightarrow {x_2} = 5\)

Theo hệ thức Vi-ét ta có: \(\displaystyle {x_1} + {x_2} = {{2\left( {m - 3} \right)} \over 3}\)

\(\displaystyle \Rightarrow {1 \over 3} + 5 = {{2\left( {m - 3} \right)} \over 3}\)

\(\displaystyle \Leftrightarrow 2\left( {m - 3} \right) = 16 \)

\(\displaystyle \Leftrightarrow m - 3 = 8 \Leftrightarrow m = 11\)

Vậy \(m = 11\) thì phương trình \(3{x^2} - 2\left( {m - 3} \right)x + 5 = 0\) có nghiệm \(\displaystyle{x_1} = {1 \over 3}\) và nghiệm \({x_2} = 5\).

Loigiaihay.com


Bình chọn:
4.1 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài