Bài 34 trang 10 SBT toán 9 tập 1


Giải bài 34 trang 10 sách bài tập toán 9. Tìm x, biết...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm \(x,\) biết:

LG câu a

\(\sqrt {x - 5}  = 3\);

Phương pháp giải:

Để tìm \(x\) trong bài toán này ta phải thực hiện các bước sau:

Bước 1: Tìm điều kiện xác định:

Áp dụng \(\sqrt A \) xác định khi \(A \ge 0\)

Bước 2: Giải phương trình bằng cách bình phương hai vế.

\(\sqrt A  = B \Leftrightarrow {A} = B^2\)

Bước 3: Kết hợp điều kiện và kết luận nghiệm của phương trình.

Lời giải chi tiết:

\(\sqrt {x - 5}  = 3\)

Điều kiện: \(x - 5 \ge 0 \Leftrightarrow x \ge 5\)

Ta có: 

\(\sqrt {x - 5}  = 3 \Leftrightarrow x - 5 = 9 \)\( \Leftrightarrow x = 14(tm)\)

Vậy \(x=14.\)

LG câu b

\(\sqrt {x - 10}  =  - 2\);

Phương pháp giải:

Để tìm \(x\) trong bài toán này ta phải thực hiện các bước sau:

Bước 1: Tìm điều kiện xác định:

Áp dụng \(\sqrt A \) xác định khi \(A \ge 0\)

Bước 2: Giải phương trình bằng cách bình phương hai vế.

\(\sqrt A  = B \Leftrightarrow {A} = B^2\)

Bước 3: Kết hợp điều kiện và kết luận nghiệm của phương trình.

Lời giải chi tiết:

\(\sqrt {x - 10}  =  - 2\)

Điều kiện: \(x - 10 \ge 0 \Leftrightarrow x \ge 10\)

Vì \(\sqrt {x - 10}  \ge 0\) mà \(-2 < 0 \) nên không có giá trị nào của x để \(\sqrt {x - 10}  =  - 2\)

LG câu c

\(\sqrt {2x - 1}  = \sqrt 5 \);

Phương pháp giải:

Để tìm \(x\) trong bài toán này ta phải thực hiện các bước sau:

Bước 1: Tìm điều kiện xác định:

Áp dụng \(\sqrt A \) xác định khi \(A \ge 0\)

Bước 2: Giải phương trình \(\sqrt A  = \sqrt B \Leftrightarrow {A} = B\)

Bước 3: Kết hợp điều kiện và kết luận nghiệm của phương trình.

Lời giải chi tiết:

\(\sqrt {2x - 1}  = \sqrt 5 \)

Điều kiện: \(2x - 1 \ge 0 \Leftrightarrow x \ge 0,5\)

Ta có: 

\(\eqalign{
& \sqrt {2x - 1} = \sqrt 5 \Leftrightarrow 2x - 1 = 5 \cr 
& \Leftrightarrow 2x = 6 \Leftrightarrow x = 3 (tm)\cr} \)

Vậy \(x=3.\)

LG câu d

\(\sqrt {4 - 5x}  = 12\). 

Phương pháp giải:

Để tìm \(x\) trong bài toán này ta phải thực hiện các bước sau:

Bước 1: Tìm điều kiện xác định:

Áp dụng \(\sqrt A \) xác định khi \(A \ge 0\)

Bước 2: Giải phương trình bằng cách bình phương hai vế.

\(\sqrt A  = B \Leftrightarrow {A} = B^2\)

Bước 3: Kết hợp điều kiện và kết luận nghiệm của phương trình.

Lời giải chi tiết:

\(\sqrt {4 - 5x}  = 12\)

Điều kiện: \(\displaystyle 4 - 5x \ge 0 \Leftrightarrow x \le {4 \over 5}\)

Ta có: 

\(\eqalign{
& \sqrt {4 - 5x} = 12 \Leftrightarrow 4 - 5x = 144 \cr 
& \Leftrightarrow - 5x = 140 \Leftrightarrow x = - 28(tm) \cr} \)

Vậy \(x=-28.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 13 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài