Bài 25 trang 9 SBT toán 9 tập 1>
Giải bài 25 trang 9 sách bài tập toán 9. Rút gọn rồi tính.
Rút gọn rồi tính:
LG câu a
\(\sqrt {6,{8^2} - 3,{2^2}} \);
Phương pháp giải:
Áp dụng hằng đẳng thức:
\({A^2} - {B^2} = (A + B).(A - B).\)
Lời giải chi tiết:
\(\eqalign{
& \sqrt {6,{8^2} - 3,{2^2}} \cr
& = \sqrt {\left( {6,8 + 3,2} \right)\left( {6,8 - 3,2} \right)} \cr
& = \sqrt {10.3,6} = \sqrt {36} = 6 \cr} \)
LG câu b
\(\sqrt {21,{8^2} - 18,{2^2}} \);
Phương pháp giải:
Áp dụng hằng đẳng thức:
\({A^2} - {B^2} = (A + B).(A - B).\)
Sử dụng các quy tắc khai phương một tích và quy tắc nhân các căn bậc hai.
Nếu \(A \ge 0,B \ge 0\) thì \(\sqrt {A.B} = \sqrt A .\sqrt B .\)
Lời giải chi tiết:
\(\eqalign{
& \sqrt {21,{8^2} - 18,{2^2}} \cr
& = \sqrt {\left( {21,8 + 18,2} \right)\left( {21,8 - 18,2} \right)} \cr} \)
\(\eqalign{
& = \sqrt {40.3,6} = \sqrt {4.36} \cr
& = \sqrt 4 .\sqrt {36} = 2.6 = 12 \cr} \)
LG câu c
\(\sqrt {117,{5^2} - 26,{5^2} - 1440} \);
Phương pháp giải:
Áp dụng hằng đẳng thức:
\({A^2} - {B^2} = (A + B).(A - B).\)
Sử dụng các quy tắc khai phương một tích và quy tắc nhân các căn bậc hai.
Nếu \(A \ge 0,B \ge 0\) thì \(\sqrt {A.B} = \sqrt A .\sqrt B .\)
Lời giải chi tiết:
\(\eqalign{
& \sqrt {117,{5^2} - 26,{5^2} - 1440} \cr
& = \sqrt {\left( {117,5 + 26,5} \right)\left( {117,5 - 26,5} \right) - 1440} \cr} \)
\( = \sqrt {144.91 - 144.10} = \sqrt {144.\left( {91 - 10} \right)} \)
\( = \sqrt {144.81} = \sqrt {144} .\sqrt {81} = 12.9 = 108\)
LG câu d
\(\sqrt {146,{5^2} - 109,{5^2} + 27.256} \).
Phương pháp giải:
Áp dụng hằng đẳng thức:
\({A^2} - {B^2} = (A + B).(A - B).\)
Sử dụng các quy tắc khai phương một tích và quy tắc nhân các căn bậc hai.
Nếu \(A \ge 0,B \ge 0\) thì \(\sqrt {A.B} = \sqrt A .\sqrt B .\)
Lời giải chi tiết:
\(\sqrt {146,{5^2} - 109,{5^2} + 27.256} \)
\( = \sqrt {\left( {146,5 + 109,5} \right)\left( {146,5 - 109,5} \right) + 27.256} \)
\( = \sqrt {256.37 + 27.256} \)
\(= \sqrt {256.(37 + 27)} \)
\(= \sqrt {256.64} \)
\( = \sqrt {256} .\sqrt {64} \)
\(= 16.8 = 128 \)
Loigiaihay.com
- Bài 26 trang 9 SBT toán 9 tập 1
- Bài 27 trang 9 SBT toán 9 tập 1
- Bài 28 trang 9 SBT toán 9 tập 1
- Bài 29 trang 9 SBT toán 9 tập 1
- Bài 30 trang 9 SBT toán 9 tập 1
>> Xem thêm