Bài 29 trang 9 SBT toán 9 tập 1


Giải bài 29 trang 9 sách bài tập toán 9. So sánh (không dùng bảng số hoặc máy tính bỏ túi) căn 2003+ căn 2005 và 2 căn 2004.

Đề bài

So sánh (không dùng bảng số hoặc máy tính bỏ túi):

\(\sqrt {2003}  + \sqrt {2005} \) và \(2\sqrt {2004} \) 

Phương pháp giải - Xem chi tiết

Áp dụng tính chất: Với \(a > 0,b > 0\) và \({a^2} < {b^2}\) thì \(a < b\)

Để chứng minh \(a < b\) ( với \(a > 0,b > 0\)) ta chứng minh \({a^2} < {b^2}\).

Chú ý: \({\left( {\sqrt A } \right)^2} = A\) ( với \(A > 0\)).

Áp dụng hằng đẳng thức: 

\(\left( {a + 1} \right)\left( {a - 1} \right) = {a^2} - 1\)

Lời giải chi tiết

Ta có:

\(\eqalign{
& {\left( {2\sqrt {2004} } \right)^2} = 4.2004 \cr 
& = 4008 + 2.2004 \cr} \)

\(\eqalign{
& {\left( {\sqrt {2003} + \sqrt {2005} } \right)^2} \cr 
& = 2003 + 2\sqrt {2003.2005} + 2005 \cr} \)

\( = 4008 + 2\sqrt {2003.2005} \)

So sánh \(2004\) và \(\sqrt {2003.2005} \)

Ta có: 

\(\eqalign{
& \sqrt {2003.2005} \cr 
& = \sqrt {(2004 - 1)(2004 + 1)} \cr 
& = \sqrt {{{2004}^2} - 1} < \sqrt {{{2004}^2}} \cr} \)

Suy ra:  

\(\eqalign{
& 2004 > \sqrt {2003.2005} \cr 
& \Rightarrow 2.2004 > 2.\sqrt {2003.2005} \cr} \)

\( \Rightarrow 4008 + 2.2004 > 4008 + 2\sqrt {2003.2005} \)

\( \Rightarrow {\left( {2\sqrt {2004} } \right)^2} > {\left( {\sqrt {2003}  + \sqrt {2005} } \right)^2}\)

Vậy \(2\sqrt {2004}  > \sqrt {2003}  + \sqrt {2005} \).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.6 trên 18 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài