Bài 32 trang 10 SBT toán 8 tập 2


Giải bài 31 trang 10 sách bài tập toán 8. Cho phương trình (3x + 2k - 5)(x - 3k + 1) = 0, trong đó k là một số. a) Tìm các giá trị của k sao cho một trong các nghiệm của phương trình là x = 1 ...

Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình \(\left( {3x + 2k - 5} \right)\left( {x - 3k + 1} \right) = 0\), trong đó \(k\) là một số.

LG a

Tìm các giá trị của \(k\) sao cho một trong các nghiệm của phương trình là \(x = 1\).

Phương pháp giải:

- Thay \(x=1\) vào phương trình đã cho rồi giải phương trình ẩn \(k\) để tìm \(k\).

Lời giải chi tiết:

Thay \(x = 1\) vào phương trình \(\left( {3x + 2k - 5} \right)\left( {x - 3k + 1} \right) = 0\), ta có:

\(\eqalign{  & \left( {3.1 + 2k - 5} \right)\left( {1 - 3k + 1} \right) = 0  \cr  &  \Leftrightarrow \left( {2k - 2} \right)\left( {2 - 3k} \right) = 0 \cr} \)

\( \Leftrightarrow 2k - 2 = 0\) hoặc \(2 - 3k = 0\)

+) Với  \(2k - 2 = 0 \Leftrightarrow 2k=2 \Leftrightarrow k = 1\)

+) Với  \(\displaystyle 2 - 3k = 0 \Leftrightarrow 3k=2 \Leftrightarrow k = {2 \over 3}\)

Vậy với \(k = 1\) hoặc \(k = \dfrac{2}{3}\)  thì phương tình đã cho có nghiệm \(x = 1.\)

LG b

Với mỗi giá trị của \(k\) vừa tìm được ở câu a, hãy giải phương trình đã cho.

Phương pháp giải:

Thay giá trị của \(k\) tìm được ở câu a) vào phương trình đã cho rồi giải phương trình ẩn \(x\) để tìm \(x\).

*) Áp dụng phương pháp giải phương trình tích : 

\( A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)

Lời giải chi tiết:

Với \(k = 1\), ta có phương trình :

\((3x + 2.1 – 5)(x – 3.1 + 1) = 0\)

\(\Leftrightarrow \left( {3x - 3} \right)\left( {x - 2} \right) = 0\)

\( \Leftrightarrow 3x - 3 = 0\) hoặc \(x - 2 = 0\)

+) Với  \(3x - 3 = 0 \Leftrightarrow 3x=3 \Leftrightarrow x = 1\)

+) Với  \(x - 2 = 0 \Leftrightarrow x = 2\)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \{1;2\}.\)

Với  \(\displaystyle k = {2 \over 3}\), ta có phương trình :

\(\displaystyle \Leftrightarrow (3x + 2. {2 \over 3}– 5)(x – 3.{2 \over 3} + 1) = 0\)

\(\displaystyle \left( {3x - {{11} \over 3}} \right)\left( {x - 1} \right) = 0\)

\( \displaystyle \Leftrightarrow 3x - {{11} \over 3} = 0\) hoặc \(x - 1 = 0\)

+) Với  \(\displaystyle 3x - {{11} \over 3} = 0 \Leftrightarrow 3x={{11} \over 3}\)\(\displaystyle \Leftrightarrow x = {{11} \over 9}\)

+) Với  \(x - 1 = 0 \Leftrightarrow x = 1\) 

 Vậy phương trình có tập nghiệm \( \displaystyle S = \left\{ \dfrac{11}{9};\,1 \right \}.\) 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4. Phương trình tích

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài