Bài 30 trang 10 SBT toán 8 tập 2


Giải bài 30 trang 10 sách bài tập toán 8. Giải các phương trình bậc hai sau đây bằng cách đưa về dạng phương trình tích : a) x^2 - 3x + 2 = 0 ; ...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình bậc hai sau đây bằng cách đưa về dạng phương trình tích.

LG a

\({x^2} - 3x + 2 = 0\) 

Phương pháp giải:

Phân tích vế trái thành nhân tử bằng phương pháp đặt nhân tử chung và phương tách hạng tử, đưa phương trình đã cho về dạng phương trình tích.

* Áp dụng phương pháp giải phương trình tích:

\(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0\).

Lời giải chi tiết:

\({x^2} - 3x + 2 = 0\) \( \Leftrightarrow {x^2} - x - 2x + 2 = 0\)

\(\eqalign{  &  \Leftrightarrow x\left( {x - 1} \right) - 2\left( {x - 1} \right) = 0  \cr  &  \Leftrightarrow \left( {x - 2} \right)\left( {x - 1} \right) = 0 \cr} \)

\( \Leftrightarrow x - 2 = 0\) hoặc \(x - 1 = 0\)

+)   \(x - 2 = 0 \Leftrightarrow x = 2 \)

+)   \(x - 1 = 0 \Leftrightarrow x = 1\)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \{2; 1\}.\)

LG b

\(- {x^2} + 5x - 6 = 0\)

Phương pháp giải:

Phân tích vế trái thành nhân tử bằng phương pháp đặt nhân tử chung và phương tách hạng tử, đưa phương trình đã cho về dạng phương trình tích.

* Áp dụng phương pháp giải phương trình tích:

\(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0\).

Lời giải chi tiết:

\( - {x^2} + 5x - 6 = 0\) \( \Leftrightarrow  - {x^2} + 2x + 3x - 6 = 0\)

\(\eqalign{  &  \Leftrightarrow  - x\left( {x - 2} \right) + 3\left( {x - 2} \right) = 0  \cr  &  \Leftrightarrow \left( {x - 2} \right)\left( {3 - x} \right) = 0 \cr} \)

\( \Leftrightarrow x - 2 = 0\) hoặc \(3 - x = 0\)

+)     \(x - 2 = 0 \Leftrightarrow x = 2\)

+)     \(3 - x = 0 \Leftrightarrow x = 3\)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \{2;3\}.\)

LG c

\(4{x^2} - 12x + 5 = 0\)

Phương pháp giải:

Phân tích vế trái thành nhân tử bằng phương pháp đặt nhân tử chung và phương tách hạng tử, đưa phương trình đã cho về dạng phương trình tích.

* Áp dụng phương pháp giải phương trình tích:

\(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0\).

Lời giải chi tiết:

\(4{x^2} - 12x + 5 = 0\)

\(\eqalign{  &  \Leftrightarrow 4{x^2} - 2x - 10x + 5 = 0  \cr  &  \Leftrightarrow 2x\left( {2x - 1} \right) - 5\left( {2x - 1} \right) = 0  \cr  &  \Leftrightarrow \left( {2x - 1} \right)\left( {2x - 5} \right) = 0 \cr} \) \( \Leftrightarrow 2x - 1 = 0\) hoặc \(2x - 5 = 0\)

+)   \(2x - 1 = 0\Leftrightarrow 2x=1 \Leftrightarrow x = 0,5\)

+)   \(2x - 5 = 0 \Leftrightarrow 2x=5 \Leftrightarrow x = 2,5\)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \{0,5;\;2,5\}.\)

LG d

\(2{x^2} + 5x + 3 = 0\)

Phương pháp giải:

Phân tích vế trái thành nhân tử bằng phương pháp đặt nhân tử chung và phương tách hạng tử, đưa phương trình đã cho về dạng phương trình tích.

* Áp dụng phương pháp giải phương trình tích:

\(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0\).

Lời giải chi tiết:

\(2{x^2} + 5x + 3 = 0\) 

\(\eqalign{  &  \Leftrightarrow 2{x^2} + 2x + 3x + 3 = 0  \cr  &  \Leftrightarrow 2x\left( {x + 1} \right) + 3\left( {x + 1} \right) = 0  \cr  &  \Leftrightarrow \left( {x + 1} \right)\left( {2x + 3} \right) = 0 \cr} \)

\( \Leftrightarrow 2x + 3 = 0\) hoặc \(x + 1 = 0\)

+)   \(2x + 3 = 0 \Leftrightarrow 2x=-3 \Leftrightarrow x =  - 1,5\)

+)    \(x + 1 = 0  \Leftrightarrow x =  - 1\)

 Vậy phương trình có tập nghiệm \( \displaystyle S = \{-1,5;\; -1\}.\)

Loigiaihay.com


Bình chọn:
4.6 trên 21 phiếu
  • Bài 31 trang 10 SBT toán 8 tập 2

    Giải bài 31 trang 10 sách bài tập toán 8. Giải các phương trình sau bằng cách đưa về dạng phương trình tích : ...

  • Bài 32 trang 10 SBT toán 8 tập 2

    Giải bài 31 trang 10 sách bài tập toán 8. Cho phương trình (3x + 2k - 5)(x - 3k + 1) = 0, trong đó k là một số. a) Tìm các giá trị của k sao cho một trong các nghiệm của phương trình là x = 1 ...

  • Bài 33 trang 11 SBT toán 8 tập 2

    Giải bài 33 trang 11 sách bài tập toán 8. Biết rằng x = -2 là một trong các nghiệm của phương trình : x^3 + ax^2 -4x - 4 = 0. a) Xác định giá trị của a ; b) ...

  • Bài 34 trang 11 SBT toán 8 tập 2

    Giải bài 34 trang 11 sách bài tập toán 8. Cho biểu thức hai biến f(x, y) = (2x - 3y + 7)(3x + 2y - 1). a) Tìm các giá trị của y sao cho phương trình (ẩn x) f (x,y) = 0, nhận x = -3 làm nghiệm. b) Tìm các giá trị của x sao cho phương trình (ẩn y) f (x,y) = 0, nhận y = 2 làm nghiệm.

  • Bài 29 trang 10 SBT toán 8 tập 2

    Giải bài 29 trang 10 sách bài tập toán 8. Giải các phương trình sau : a) (x - 1)(x^2 + 5x - 2) - (x^3 - 1) = 0 ; ...

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí