Bài 3.2 phần bài tập bổ sung trang 103 SBT toán 9 tập 2


Đề bài

Cho nửa đường tròn đường kính \(AB,\) tâm \(O.\) Đường tròn tâm \(A\) bán kính \(AO\) cắt nửa đường tròn đã cho tại \(C.\) Đường tròn tâm \(B\) bán kính \(BO\) cắt nửa đường tròn đã cho tại \(D.\) Đường thẳng qua \(O\) và song song với \(AD\) cắt nửa đường tròn đã cho tại \(E.\)

\(a)\) \(\widehat {ADC}\) và \(\widehat {ABC}\) có bằng nhau không\(?\) Vì sao\(?\)

\(b)\) Chứng minh \(CD\) song song với \(AB.\)

\(c)\) Chứng minh \(AD\) vuông góc với \(OC\)

\(d)\) Tính số đo của \(\widehat {DAO}\).

\(e)\) So sánh hai cung \(BE\) và \(CD.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong một đường tròn, các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.

+) Trong một đường tròn, góc nội tiếp chắn nửa đường tròn là góc vuông.

+) Tứ giác có bốn cạnh bằng nhau là hình thoi.

+) Trong hình thoi, hai đường chéo vuông góc.

+) Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.

Lời giải chi tiết

\(a)\) Trong đường tròn \((O)\) ta có:

\(\widehat {ADC} = \widehat {ABC}\)  (\(2\) góc nội tiếp cùng chắn cung \(\overparen{AC}\))

\(b)\) \(∆ACB\) nội tiếp trong đường tròn \((O)\) có \(AB\) là đường kính nên \(∆ABC\) vuông tại \(C\)

\( \Rightarrow CO = OA = \displaystyle{1 \over 2}AB\) (tính chất tam giác vuông)

Mà \(AC = AO\)  (bán kính đường tròn \((A)\))

Suy ra: \(AC = AO = OC\)

\( \Rightarrow \)\( ∆ACO\) đều \( \Rightarrow \widehat {AOC} = {60^o}\)

Ta có: \(∆ADB\) nội tiếp trong đường tròn đường kính \(AB\) nên \(∆ADB\) vuông tại \(D\)

\( \Rightarrow DO = OB = OA = \displaystyle {1 \over 2}AB\) (tính chất tam giác vuông)

\(BD = BO\) (bán kính đường tròn \((B)\))

Suy ra: \(BO = OD = BD\)

\( \Rightarrow \) \(∆BOD\) đều

\( \Rightarrow \widehat {ODB} = \widehat {BOD} = {60^o}\)

Mà \(\widehat {AOC} + \widehat {COD} + \widehat {BOD} = {180^o}\)

Suy ra: \(\widehat {COD} = {60^o}\)

Kết hợp với: \(OC = OD\)  (vì cùng bằng \(\displaystyle {1 \over 2}AB\))

Suy ra: \(∆COD\) đều

\( \Rightarrow \widehat {ODC} = {60^o} \Rightarrow \widehat {ODC} = \widehat {BOD}\)

\( \Rightarrow \) \(CD // AB\) (vì có cặp góc ở vị trí so le trong bằng nhau)

\(c)\) Ta có: \(∆AOC\) đều (chứng minh trên) \( \Rightarrow OA = AC = OC\)

\(∆OCD\) đều (chứng minh trên)  \( \Rightarrow OC = OD = CD\)

Suy ra: \(AC = AO = OD = DC\)

Vậy: tứ giác \(AODC\) là hình thoi. Suy ra \( AD \bot OC.\)

\(d)\) \(∆BOD\) đều (chứng minh trên) \( \Rightarrow \widehat {OBD} = {60^o}\) hay \(\widehat {ABD} = {60^o}\)

Vì \(∆ADB\) vuông tại \(D\)

\( \Rightarrow \widehat {DAB} + \widehat {ABD} = {90^o}\)

\( \Rightarrow \widehat {DAB} = {90^o} - \widehat {ABD} \)\(= {90^o} - {60^o} = {30^o}\)

Vậy \(\widehat {DAO} = {30^o}\)

\(e)\) \(OE // AD\;\; (gt)\)

\( \Rightarrow \widehat {EOB} = \widehat {DAO} = {30^o}\) (hai góc đồng vị)

\( sđ \overparen{BE}\) \( = \widehat {EOB} = {30^0}\)

\( sđ \overparen{CD}\) \( = \widehat {COD}\)

mà \(\widehat {COD} = {60^o}\) (chứng minh trên)

\(  sđ \overparen{CD} = 60^o\)

Suy ra: Số đo cung \(\overparen{CD}\) gấp đôi số đo cung \(\overparen{BE}\).

Loigiaihay.com


Bình chọn:
4.2 trên 6 phiếu

Các bài liên quan: - Bài 3. Góc nội tiếp

  • Bài 3.1 phần bài tập bổ sung trang 103 SBT toán 9 tập 2

    Giải bài 3.1 phần bài tập bổ sung trang 103 SBT toán 9.Mỗi câu sau đây đúng hay sai...

  • Bài 23 trang 103 SBT toán 9 tập 2

    Giải bài 23 trang 103 sách bài tập toán 9. Cho tam giác cân ABC (AB = AC) nội tiếp đường tròn tâm O...

  • Bài 22 trang 102 SBT toán 9 tập 2

    Giải bài 22 trang 102 sách bài tập toán 9.Vẽ một tam giác vuông biết cạnh huyền là 4cm và đường cao ứng với cạnh huyền là 1,5cm.

  • Bài 21 trang 102 SBT toán 9 tập 2

    Giải bài 21 trang 102 sách bài tập toán 9. Cho tam giác ABC nội tiếp trong đường tròn tâm O,...

  • Bài 20 trang 102 SBT toán 9 tập 2

    Giải bài 20 trang 102 sách bài tập toán 9.Cho tam giác đều ABC nội tiếp đường tròn (O) và M là một điểm của cung nhỏ BC. Trên MA lấy điểm D sao cho MD = MB...

  • Bài 19 trang 102 SBT toán 9 tập 2

    Giải bài 19 trang 102 sách bài tập toán 9. Để giúp xe lửa chuyển từ một đường ray từ hướng này sang một đường ray theo hướng khác, người ta làm xen giữa một đoạn đường ray hình vòng cung...

  • Bài 18 trang 102 SBT toán 9 tập 2

    Giải bài 18 trang 102 sách bài tập toán 9. Cho đường tròn (O) và một điểm M cố định không nằm trên đường tròn. Qua M vẽ một cát tuyến bất kì cắt đường tròn ở A và B. Chứng minh rằng tích MA.MB không đổi.

  • Bài 17 trang 102 SBT toán 9 tập 2

    Giải bài 17 trang 102 sách bài tập toán 9. Cho đường tròn (O) và hai dây AB, AC bằng nhau. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt đường tròn (O) ở E...

  • Bài 16 trang 102 SBT toán 9 tập 2

    Giải bài 16 trang 102 sách bài tập toán 9. Cho đường tròn (O) và hai đường kính AB, CD vuông góc với nhau. Lấy một điểm M trên cung AC rồi vẽ tiếp tuyến với đường tròn (O) tại M...

  • Bài 15 trang 102 SBT toán 9 tập 2

    Giải bài 15 trang 102 sách bài tập toán 9. Cho đường tròn tâm O, bán kính 1,5cm. Hãy vẽ hình vuông ABCD có bốn đỉnh nằm trên đường tròn đó. Nêu cách vẽ.

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.